【PyTorch深度学习-龙龙老师】-测试版202112人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标检测、语义分割、图像变换等方向,几乎都是基于深度学习端到端地训 练,获得的模型性能好,适应性强;在 Atria 游戏平台上,DeepMind 设计的 DQN 算法模 型可以在相同的算法、模型结构和超参数的设定下,在 RCNN、Faster RCNN、Mask RCNN、SSD、YOLO、 RetinaNet 系列等。 语义分割(Semantic Segmentation) 是通过算法自动分割并识别出图片中的内容,可以 将语义分割理解为像素点的分类问题,分析每个像素点的物体的类别信息,如图 1.16 所 示。常见的语义分割模型有 FCN、U-net、PSPNet、DeepLab 系列等。 预览版202112 1 1.4 深度学习应用 11 图 1.15 目标检测效果图 图 1.16 语义分割效果图 视频理解(Video Understanding) 随着深度学习在 2D 图片的相关任务上取得较好的效 果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 C3D、TSN、DOVF、TS_LSTM0 码力 | 439 页 | 29.91 MB | 1 年前3
动手学深度学习 v2.0Mask R‐CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 13.9 语义分割和数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 13.9.1 图像分割和实例分割 图像分割和实例分割 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 13.9.2 Pascal VOC2012 语义分割数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 13.10 转置卷积 . . . . . . . . . . . ional neural network,CNN)是一类强大的、为处理图像数据而设计的 神经网络。基于卷积神经网络架构的模型在计算机视觉领域中已经占主导地位,当今几乎所有的图像识别、 目标检测或语义分割相关的学术竞赛和商业应用都以这种方法为基础。 现代卷积神经网络的设计得益于生物学、群论和一系列的补充实验。卷积神经网络需要的参数少于全连接架 构的网络,而且卷积也很容易用GPU并行计算。因此0 码力 | 797 页 | 29.45 MB | 1 年前3
深度学习在电子商务中的应用基于词语聚类的矢量化 基于用户会话的矢量化 原型评测结果及效果示例 • 深度学习与聊天机器人 聊天机器人简介 聊天机器人主要模块及架构 深度学习探索 聊天机器人评测结果 6 • 语义词汇差异 理发器, 理发推子, 电推子 血糖计, 血糖仪 山地车,死飞,自行车,碟刹,折叠车,公路车, 单车 • 解决方案 同义词 ? 归一化 ? 預報 =》预报, 五岁 =》 矢量化模型介绍 Mikolov(Google员工)等人2013发表了两篇关于Word2Vec的文章, 成为词语矢量化表示的基础 Word2vec的优点: 词语矢量考虑了上下文及词语之间的语义关系 复杂词语可以通过矢量计算来实现(如 Vec(北京)= vec(东京) – vec(日本) + vec(中国) ) 矢量化模型的现况 词语的矢量化模型已经有开源实现方案 句子和文档的矢量化还在摸索阶段,尚不成熟 来预测上下文词语出现的 概率 10 基于词语聚类的矢量化模型 • Word2vec等工具可以有效地将词语转化为向量 • 将句子/段落/文章有效转化为向量则有很大的挑战。 简单平均/加权平均容易失去句子等的语义/结构信息 直接以句子为单位进行训练, 则训练文本严重不足 • 电商搜索中遇到的主要是句子/短文分析, 可以将短文中的词语聚类, 挑选具有代表 性的词语聚类结果, 来表示整个短文 • 传统0 码力 | 27 页 | 1.98 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2,…), act2 (slot1=value1,…), … • acttype, slot, value的取值范围已预先定义好 闲聊机器人 • 问题 • 容易产生“安全”的答案 • 目标函数中考虑 • 对话容易继续进行 • 降低产生“我不知道”这类答案的可能性 • 带来新的信息 • 让产生的答复与之前的不同 • 语义要连贯 • 加入互信息:同时考虑从answer到question的概率 Deep Reinforcement Learning for Dialogue Generation 闲聊机器人:其他因素0 码力 | 39 页 | 2.24 MB | 1 年前3
机器学习课程-温州大学-09深度学习-目标检测检测则关注特定的物体目标 ,要求同时获得这一目标的 类别信息和位置信息。 分割(Segmentation) 分割包括语义分割(semantic segmentation)和实例分割( instance segmentation),前者 是对前背景分离的拓展,要求 分离开具有不同语义的图像部 分,而后者是检测任务的拓展 ,要求描述出目标的轮廓(相 比检测框更为精细)。 5 目标检测和识别 •0 码力 | 43 页 | 4.12 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波• MPI&RingAllreduce:Horovod,使用 MPI替换grpc,同步通信模式;带宽优化,增加延时; • PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 4 深度学习-分布式模型推理 • 深度特征效果对比 • 文本Embedding特征,相比于文本标签,相关指标提升约3+% • 基于word2vec、bert等生成embedding向量,提高了语义编码的准确性,降低了训练成本 • 指标提升主要来源于Embedding特征保留了更多原始信息,避免了标签带来的信息损失 • User/Item Embedding 协同召回 • Item2ve0 码力 | 36 页 | 16.69 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 证、ISO9001质量管理体系认证、双软认证等最全面的企业服务资质。 0, … ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ] one-hot表示 高维,稀疏,正交,无法计算语义相关性 字词表示 威海市 [ -2.0795249939, 1.4055569172, 1.9540510178, … -0.651816964, -6.1333961487, -0.51071900130 码力 | 46 页 | 25.61 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言语音分析 词法分析 句法分析 语用分析 语义分析 20世纪70年代 • • 理性主义方法 基于统计的方法 20世纪50年代 • 图灵测试 • 经验主义方法 • 基于规则的方法 2008 • 深度学习 未来 深度学习入门-NLP(自然语言处理) 19 深度学习入门-NLP(自然语言处理) 1.短文本相似 2.文本分类 3.QA机器人 4.语义标注 5.机器翻译 6.…… 200 码力 | 80 页 | 5.38 MB | 1 年前3
《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品2训练ResNet • 应⽤用:使用ResNet识别货架商品 • 扩展:图像分类常用数据集综述 • 扩展:图像分类更多应⽤用场景介绍 目录 基础:图像分类问题定义与说明 图像分类问题 语义级分类 细粒度分类 图像分类问题 实例级分类 识别问题 图像分类问题 实例级分类 识别问题 图像分类问题 图像分类评估:Top-1 / Top-5 准确率 图像分类评估:混淆矩阵 图像分类评估:ROC0 码力 | 58 页 | 23.92 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用新时代的奇虎360 SACC2017 万物互联的新时代 交通 智能家居 机器人 AR/VR/MR 智能手机 穿戴设备 SACC2017 万物互联的核心技术 视觉感知 语音感知 语义理解 人工智能 大数据分析 物 环境 SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC20170 码力 | 26 页 | 3.69 MB | 1 年前3
共 14 条
- 1
- 2













