积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(64)机器学习(64)

语言

全部中文(简体)(63)英语(1)

格式

全部PDF文档 PDF(64)
 
本次搜索耗时 0.042 秒,为您找到相关结果约 64 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 …
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    (假设百万条数据) 1.数据集划分 数据集 训练集 验证集 测试集 5 交叉验证 1. 使用训练集训练出k个模型 2. 用k个模型分别对交叉验证集计算得 出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 欠拟合的处理 1.添加新特征 当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通 过挖掘组合特征等新的特征,往往能够取得更好的效果。 2.增加模型复杂度 简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能 力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元 个数等。 3.减小正则化系数 正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减 stopping的优点是,只运行 一次梯度下降,你可以找出?的较小 值,中间值和较大值,而无需尝试?2 正则化超级参数?的很多值。 27 正则化 大部分的计算机视觉任务使用很多的数据 ,所以数据增强是经常使用的一种技巧来 提高计算机视觉系统的表现。计算机视觉 任务的数据增强通常以下方法实现: (1) 随意翻转、镜像。 (2) 随意裁剪。 (3) 扭曲变形图片。 (4) 颜色转换,然后给R、G和B三个通道上
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-特征工程

    99.0] 4 13 2. 特征构建 • 聚合特征构造主要通过对多个特征的分组聚合实现,这些特征通常来 自同一张表或者多张表的联立。 • 聚合特征构造使用一对多的关联来对观测值分组,然后计算统计量。 • 常见的分组统计量有中位数、算术平均数、众数、最小值、最大值、 标准差、方差和频数等。 聚合特征构造 14 2. 特征构建 相对于聚合特征构造依赖于多个特征的分组统计,通常依赖于对于特征本 常见的转换方法有单调转换(幂变换、log变换、绝对值等)、线性组合、 多项式组合、比例、排名编码和异或值等。 转换特征构造 15 2. 特征构建 • 基于单价和销售量计算销售额. • 基于原价和售价计算利润. • 基于不同月份的销售额计算环比或同比销售额增长/下降率. • …… 转换特征构造 此外,由于业务的需求,一些指标特征也需要基于业务理解 进行特征构造。 16 3. 特征提取 01 中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 2. HOG特征 方向梯度直方图(HOG)特征是 2005 年针对行人检测问题提出的直方图特 征,它通过计算和统计图像局部区域的梯度方向直方图来实现特征描述。 归一化处理 计算图像梯度 统计梯度方向 特征向量 归一化 生成特征向量 步骤 图像特征提取 3. 特征提取 22 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J]
    0 码力 | 38 页 | 1.28 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 人工智能 机器学习 深度学习 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 现任字节跳动科技有限公司人 工智能实验室总监,北京大学、南京 大学客座教授,IEEE 会士,ACM 杰 出科学家,CCF 高级会员。 代表作:《统计学习方法》 机器学习界的国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 市值/估值/融资额 1 Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1.21万亿美元 2 Google(谷歌) 计算机视觉技术、自然语言处理技术 等 综合 美国 1998年 上市 市值9324亿美元 3 Facebook(脸书) 人脸识别、深度学习等 社交 美国 2004年 上市 市值5934亿美元 4 百度 计算机视觉技术、自然语言处理技 术 、知识图谱等
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . 71 2.5.3 分离计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Python控制流的梯度计算 . . . . . . . . . . . . . . . . . . . . . . . 前向传播、反向传播和计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7.1 前向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.7.2 前向传播计算图 . . . 10.8 提交Kaggle预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 深度学习计算 191 5.1 层和块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 搜狗深度学习技术在广告推荐领域的应用

    Representation based Framework for Question Answering. CIKM2016, pages 1869-1872, 2016. Sogou Inc 文本相关性计算 文本相关性计算 深度学习在搜狗搜索广告的一些应用 LSTM LSTM LSTM 中长款 牛仔 外套 ResNet-50层 CNN-LSTM Encoder CNN CNN 中长款牛仔外套 Cosine-Loss 容易设计;刻画细致;特 征稀疏; 特征量巨大;模型复杂度 受限 连续特征 连续特征 需要仔细设计;定长;特 征稠密 特征量相对较小,可以 使用多种模型训练 模型类别 模型类别 线性  简单、处理特征 量大、稳定性好  需借助交叉特征  Logistic Regression 非线性  能够学习特征间 非线性关系  模型复杂、计算 耗时  DNN、GBDT 模型融合 模型融合的工程实现 • 可支持多个不同模型的加载和计算 • 可支持模型之间的交叉和CTR的bagging • 可通过配置项随时调整模型融合方案 • 避免不必要的重复操作,减少时间复杂度 目标 • 模型本身也看做一个抽象特征 • 模型特征依赖于其它特征,通过计算得到新的特征 • 模型特征输出可作为CTR,也可作为特征为其它模型使用 • 限定ModelFeature的计算顺序,即可实现bagging/模型交叉等功能
    0 码力 | 22 页 | 1.60 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    Function)度量全部样本集的 平均误差。常用的代价函数包括均方误差、 均方根误差、平均绝对误差等。 目标函数(Object Function)代价函数和正则 化函数,最终要优化的函数。 备注:损失函数的系数1/2是为了便于计算,使对平方项求导后的常数系数为1,这样在形式上稍微简单一些。有些教科书把系数设为1/2,有些设置为1,这些都不影响结果。 损失函数采用平方和损失: ?(?(?)) = 1 2 (ℎ(?(?)) Descent,BGD) 梯度下降的每一步中,都用到了所有的训练样本 随机梯度下降(Stochastic Gradient Descent,SGD) 梯度下降的每一步中,用到一个样本,在每一次计算之后 便更新参数 ,而不需要首先将所有的训练集求和 小批量梯度下降(Mini-Batch Gradient Descent,MBGD) 梯度下降的每一步中,用到了一定批量的训练样本 14 梯度下降的三种形式 梯度下降的每一步中,用到一个样本,在每一次计算之后便更新参数,而不 需要首先将所有的训练集求和 参数更新 ??: = ?? − ? ℎ ?(?) − ?(?) ??(?) (同步更新?? ,(j=0,1,...,n )) 17 梯度下降的三种形式 小批量梯度下降(Mini-Batch Gradient Descent) 梯度下降的每一步中,用到了一定批量的训练样本 每计算常数?次训练实例,便更新一次参数
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    回归树问题的提升算法: 输入:训练数据集? = ?1, ?1 , ?2, ?2 , … , ??, ?? 输出:提升树??(?) 1 初始化?0 ? = 0 2 对? = 1,2, … ? (?)计算残差 ??? = ?? − ??−1 ?? , ? = 1,2, … , ? ? 拟合残差???学习一个回归树,得到?(?: ??) ? 更新??(?) = ??−1 ? + ? ?: ?? 3 =1 ? ?(??, ?) 2 对? = 1,2, … ? ? 对? = 1,2 … ?计算 ??? = − ??(??, ?(??)) ??(??) ? ? =??−1(?) ? 拟合???学习一个回归树,得到? ?: ?? ? 更新?? ? = ??−1 ? + ??? ?: ?? ? 计算步长, ?? = ??? min ? ෍ ?=1 L(??, ??−1 ?? + ?? 分裂前左、右子树的分数: 不分割可以拿到的分数 加入新叶子节点引入的复杂度代价 34 3.XGBoost 使用贪心方法,选增益( ???? )最大的分裂方式 贪心方法,众多????中找到最大值做为最优分割节点(split point),因此模型会 将所有样本按照(一阶梯度)从小到大排序,通过遍历,查看每个节点是否需要 分割,计算复杂度是:决策树叶子节点数 – 1。 XGBoost的分裂方式
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    ,自顶向下来构建决策树。 ⚫ 贪心算法:在每一步选择中都采取 在当前状态下最好/优的选择。 ⚫ 在决策树的生成过程中,分割方法 即属性选择的度量是关键。 6 1.决策树原理 优点: ⚫ 推理过程容易理解,计算简单,可解释性强。 ⚫ 比较适合处理有缺失属性的样本。 ⚫ 可自动忽略目标变量没有贡献的属性变量,也为判断属性变量的重要性, 减少变量的数目提供参考。 缺点: ⚫ 容易造成过拟合,需要采用剪枝操作。 ID3 算法是以信息论为基础,以信息增益为衡量标准,从而实现对数据 的归纳分类。 ⚫ ID3 算法计算每个属性的信息增益,并选取具有最高增益的属性作为给 定的测试属性。 ID3 算法 10 2.ID3算法 ID3 算法 其大致步骤为: 1. 初始化特征集合和数据集合; 2. 计算数据集合信息熵和所有特征的条件熵,选择信息增益最大的特征作为当 前决策节点; 3. 更新数据集合和 1, ?2 , ?3,……, ??−1, ?? 从小到大排列, 取相邻两样本值的 平均数做划分点,一共取? − 1个 ,其中第?个划分点?? 表示为: ?? = ??−1+?? 2 。分别计算以这? − 1个点作为二元分类点时的基尼系 数。选择基尼指数最小的点为该连 续特征的二元离散分类点。 比如取到的基尼指数最小的点为??,则小于??的值为类别1,大于??的值为类别2,这 样
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 骑士取餐 到达用户 完成交付 商户接单 商户出餐 到店时间 出餐时间 送餐时间 交付时间 等餐时间 2 到达识别,交付时间计算 数据积累,异常数据剔除 网格建立,分时段统计 交付时间预估 取餐/送餐分别回归拟合 骑士速度预估 9 时间预估 — 出餐时间预估 10 数据 & 特征工程 • 特征 = 基础特征 的出餐时间训练数据,DNN 更好地学习自身有用的特征 - DNN对特征工程要求较低,自身可以学习有用的特征,PCA降维影响较小,但时间复杂度较高 • XGBoost模型 - 采用近似求解算法,找出可能的分裂点,避免选用贪心算法的过高时间复杂度 - 计算采用不同分裂点时,叶子打分函数的增益;并选择增益最高的分裂点,作为新迭代树的最终分裂 节点,构造新的迭代树 - 通过调节迭代树数目、学 基于现有状况、订单增速、消 化速度、天气、当前手段等多 维特征,使用XGBoost模型回 归预测未来五分钟进单的平均 配送时长 • 分商圈、分时段、多模型的精 细化预估 • 分布式、多线程、并行计算最 佳分割点,满足海量数据的实 时性要求 • 在供需失衡之前,即实施调控 手段 5 供需平衡 14 5.2 单量调控模型 • 通过价格平衡未来的进单量 和系统可承载的单量 • 基于GBRT对未来进入单量的
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
共 64 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
构建基于媒体数据弹性深度学习计算平台机器课程温州大学05实践特征工程01引言动手v2搜狗技术广告推荐领域应用02回归08集成07决策决策树经典算法人工智能人工智能外卖物流调度
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩