积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(53)机器学习(53)

语言

全部中文(简体)(52)英语(1)

格式

全部PDF文档 PDF(53)
 
本次搜索耗时 0.084 秒,为您找到相关结果约 53 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    5-7B-Chat", torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", ) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • 将服务扩展到多个副本上,所有副本通过单一 endpoint 对外提供服务 • 所有内容均保存在您的云账户中(包括您的虚拟机和 bucket) • 完全私密 - 没有其他人能看到您的聊天记录 22 Chapter 1. 文档 Qwen 1.11.2 安装 SkyPilot 我们建议您按照 指示 安装 SkyPilot。以下为您提供了一个使用 FlashAttention-2 ,请确保你的 CUDA 版本在 11.6 以上。 准备数据 LLaMA-Factory 在 data 文件夹中提供了多个训练数据集,您可以直接使用它们。如果您打算使用自定义数 据集,请按照以下方式准备您的数据集。 1. 请将您的数据以 json 格式进行组织,并将数据放入 data 文件夹中。LLaMA-Factory 支持以 alpaca 或 sharegpt 格式的数据集。
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足 的示例。由于能够轻松地创建可以提高表现力的新模块,Keras 然后你就可以安装 Keras 本身了。有两种方法安装 Keras: • 使用 PyPI 安装 Keras (推荐): sudo pip install keras 如果你使用 virtualenv 虚拟环境, 你可以避免使用 sudo: pip install keras • 或者:使用 Github 源码安装 Keras: 首先,使用 git 来克隆 Keras: git clone https://github activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # 生成虚拟数据 import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(2, size=(1000
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学 预览版202112 第 1 章 人工智能绪论 2 科。 在机器学习中,有一个通过神经网 自 AlexNet 模型提出后,各种各样的算法模型相继被发表,其中有 VGG 系列、 GoogLeNet 系列、ResNet 系列、DenseNet 系列等。ResNet 系列模型将网络的层数提升至数 百层、甚至上千层,同时保持性能不变甚至更优。它算法思想简单,具有普适性,并且效 果显著,是深度学习最具代表性的模型。 除了有监督学习领域取得了惊人的成果,在无监督学习和强化学习领域也取得了巨大 等。常应用在咨询系统、娱乐系统、智能家居等中。 预览版202112 第 1 章 人工智能绪论 12 1.4.3 强化学习 虚拟游戏 相对于真实环境,虚拟游戏平台既可以训练、测试强化学习算法,又可以避 免无关因素干扰,同时也能将实验代价降到最低。目前常用的虚拟游戏平台有 OpenAI Gym、OpenAI Universe、OpenAI Roboschool、DeepMind OpenSpiel、MuJoCo
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    抽取基础特征 组合基础特征,构造组合特征 组合基础特征,构造组合特征 统计基础信息,构造统计特征 独热编码,构造稀疏特征 降维 决策模型 11 • 骑士体验 取餐距离、订单数量、订单组数 • 用户体验 订单剩余时间、骑士完成时间、 订单准时性 • 配送效率 等餐时间、空驶距离、空闲骑士、 商圈压力 距离的节省: 订单组与骑士打分: 根据商圈压力调整: 3 分配方案 回溯定位异常调度原因,诊断调试算法 • 实时获取调度监控指标 • 及时预警引入人工干预 • 精准模拟实际订单分布情况 • 有效评估调度算法的改进效果 • 合理划分物流范围 • 节省调度运力,提升商户配送能力 • 云端虚拟队列,实现调度指派 • 提升物流效率 仿真系统 实时监控 时光机 寻宝系统 1 2 3 4 5 时光机系统—历史数据可视化分析 真实再现调度场景细节 回溯定位异常调度原因,诊断调试算法
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    目标受众 本书面向学生(本科生或研究生)、工程师和研究人员,他们希望扎实掌握深度学习的实用技术。因为我们 从头开始解释每个概念,所以不需要过往的深度学习或机器学习背景。全面解释深度学习的方法需要一些数 学和编程,但我们只假设读者了解一些基础知识,包括线性代数、微积分、概率和非常基础的Python编程。 此外,在附录中,我们提供了本书所涵盖的大多数数学知识的复习。大多数时候,我们会优先考虑直觉和想 那么到底什么是参数呢?参数可以被看作旋钮,旋钮的转动可以调整程序的行为。任一调整参数后的程序被 称为模型(model)。通过操作参数而生成的所有不同程序(输入‐输出映射)的集合称为“模型族”。使用数 据集来选择参数的元程序被称为学习算法(learning algorithm)。 在开始用机器学习算法解决问题之前,我们必须精确地定义问题,确定输入(input)和输出(output)的性 质, 4. 重复第(2)步和第(3)步,直到模型在任务中的表现令人满意。 图1.1.2: 一个典型的训练过程 总而言之,我们没有编写唤醒词识别器,而是编写了一个“学习”程序。如果我们用一个巨大的带标签的数 据集,它很可能可以“学习”识别唤醒词。这种“通过用数据集来确定程序行为”的方法可以被看作用数据 编程(programming with data)。比如,我们可以通过向机器学习系统,提供许多猫和狗的图片来设计一个
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    Lab 中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 在 Jupyter Lab 中使用 TensorFlow 2 Docker 容器 与 虚拟机 虚拟机 Docker 容器 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 在 Docker 中使用 TensorFlow 2 “Hello
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    浙江大学CAD&CG国家重点实验室 SLAM: 同时定位与地图构建 • 机器人和计算机视觉领域的基本问题 • 在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 • 惯性传感器(英文叫 生成 SLAM应用介绍 • 无人车 MobileEye、特斯拉等自动驾驶方案 以廉价的摄像头为主 Google无人车项目Waymo 使用高精度激光雷达构建地图 SLAM应用介绍 • 虚拟/增强现实:Inside-Out方案 目前绝大多数VR头盔都采用 Outside-In的定位方案,需要在环境 中放置一个或多个传感器,活动范 围受限,不支持大范围移动的定位。 基于SLAM技术
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    train=True , #用 来 训 练 的 数 据 8 1.2. 导入样本数据 download=True , #如 果 根 目 录 没 有 就 下 载 transform=ToTensor () ) test_data = datasets . FashionMNIST( root=” data ” , train=False , #用 来 测 试 的 数 据 download=True , #如 果 根 目 录 没 有 就 下 载 transform=ToTensor () ) #把 数 据 显 示 一 下 labels_map = { 0: ”T−Shirt ” , 1: ” Trouser ” , 2: ” Pullover ” , 3: ” Dress ” , 4: ”Coat” , 5: ” Sandal ” , 6: ” Shirt ” , 7: ” Sneaker e = plt . f i g u r e () # 抽 取 索 引 为 100 的 数 据 来 显 示 img , l a b e l = training_data [ 1 0 0 ] plt . t i t l e ( labels_map [ l a b e l ] ) #squeeze 函 数 把 为1 的 维 度 去 掉 plt . imshow ( img . squeeze
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    NumPy(Numeric Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用, reshape(3, 4) # 创建一个3行4列的数组 >data array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) ndarray对维数没有限制。 [ ]从内到外分别为第0轴,第1轴,第2轴,第3轴。 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据 的集合,以 0 下标为开始进行集合中元素的索引。 array([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) >np.empty((5, 2))# 创建全空数组,其实每个值都是接近于零的数 array([[ 6.95312756e-310, 2.12199579e-314], [ 2.12199579e-314, 4.94065646e-324], [ 0.00000000e+000
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11机器学习-降维

    降维概述 维数灾难(Curse of Dimensionality):通常是指在涉及到向量的计算的问题 中,随着维数的增加,计算量呈指数倍增长的一种现象。 在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万 个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增 加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。 5 1.降维概述 维数灾难 维数灾难涉及 下图所示的S曲线(不同颜色的图像表示不同类别的数据),t-SNE表现更好 。因为t-SNE主要是关注数据的局部结构。 11 1.降维概述 降维的优缺点 降维的优点: • 通过减少特征的维数,数据集存储所需的空间也相应减少,减少了特征维数所需的计算 训练时间; • 数据集特征的降维有助于快速可视化数据; • 通过处理多重共线性消除冗余特征。 降维的缺点: • 由于降维可能会丢失一些数据; 主成分分析(Principal Component Analysis,PCA)是一种降维方法, 通过将一个大的特征集转换成一个较小的特征集,这个特征集仍然包含 了原始数据中的大部分信息,从而降低了原始数据的维数。 减少一个数据集的特征数量自然是以牺牲准确性为代价的,但降维的诀 窍是用一点准确性换取简单性。因为更小的数据集更容易探索和可视化 ,并且对于机器学习算法来说,分析数据会更快、更容易,而不需要处
    0 码力 | 51 页 | 3.14 MB | 1 年前
    3
共 53 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
AI模型千问qwen中文文档Keras基于Python深度学习PyTorch深度学习经典算法人工智能人工智能外卖物流调度应用动手v2TensorFlow快速入门实战上手训练部署服务复杂环境视觉同时定位地图构建连接神经网络神经网神经网络pytorch机器课程温州大学numpy使用总结11降维
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩