积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(54)机器学习(54)

语言

全部中文(简体)(53)英语(1)

格式

全部PDF文档 PDF(54)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 54 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    1 2023年05月 深度学习-自然语言处理和词嵌入 黄海广 副教授 2 03 Word2Vec 04 GloVe 本章目录 01 词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT GPT 4 1.词汇表征和文本数据处理 5 1.词汇表征和文本数据处理 6 1.词汇表征和文本数据处理 7 1.词汇表征和文本数据处理 8 2.词嵌入 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 9 2.词嵌入 “Sally Johnson is an orange farmer 2.词嵌入 嵌入矩阵 14 3.Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    46 2.1.6 转换为其他Python对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1 读取数据集 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.2 处理缺失值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 转换为张量格式 6.1 基本概率论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.6.2 处理多个随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.6.3 期望和方差 . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1.21万亿美元 2 Google(谷歌) 计算机视觉技术、自然语言处理技术 等 综合 美国 1998年 上市 市值9324亿美元 3 Facebook(脸书) 人脸识别、深度学习等 社交 美国 2004年 上市 市值5934亿美元 4 百度 计算机视觉技术、自然语言处理技 术 、知识图谱等 综合 中国 Anywhere 自然语言处理技术、非结构化数据认知 企业管理 美国 2003年 B轮融资 估值68亿美元 10 IBM Watson(IBM沃森) 深度学习、智适应学习技术 计算机 美国 1911年 上市 市值1198亿美元 11 松鼠AI 1对1 智适应学习技术、机器学习 教育 中国 2015年 A轮融资 估值11亿美元 12 字节跳动 跨媒体分析推理技术、深度学习、自 然 语言处理、图像识别 度 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 含有特定目标的 部分 高级处理 验证得到的
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1.21万亿美元 2 Google(谷歌) 计算机视觉技术、自然语言处理技术 等 综合 美国 1998年 上市 市值9324亿美元 3 Facebook(脸书) 人脸识别、深度学习等 社交 美国 2004年 上市 市值5934亿美元 4 百度 计算机视觉技术、自然语言处理技 术 、知识图谱等 综合 中国 Anywhere 自然语言处理技术、非结构化数据认知 企业管理 美国 2003年 B轮融资 估值68亿美元 10 IBM Watson(IBM沃森) 深度学习、智适应学习技术 计算机 美国 1911年 上市 市值1198亿美元 11 松鼠AI 1对1 智适应学习技术、机器学习 教育 中国 2015年 A轮融资 估值11亿美元 12 字节跳动 跨媒体分析推理技术、深度学习、自 然 语言处理、图像识别 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些 本来使用C++,Fortran或Matlab等所做的任务。 60 Python模块-NumPy 切片 61
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    在机器学习中,有一个通过神经网络来学习复杂、抽象逻辑的研究方向,称为神经网 络。神经网络方向的研究经历了两起两落。从 2012 年开始,由于算法效果极为显著,深层 神经网络技术在计算机视觉、自然语言处理、机器人等领域取得了重大突破,部分任务上 甚至超越了人类智能水平,开启了以深层神经网络为代表的人工智能的第三次复兴。深层 神经网络也有了一个新名字,叫作深度学习。一般来讲,神经网络和深度学习的区别并不 图 1.7 Mark 1 感知机网络结构② 1969 年,美国科学家 Marvin Minsky 等人在出版的《Perceptrons》一书中指出了感知 机等线性模型的主要缺陷,即无法处理简单的异或 XOR 等线性不可分问题。这直接导致 了以感知机为代表的神经网络的相关研究进入了低谷期,一般认为 1969 年~1982 年为人工 智能发展的第一次寒冬。 尽管处于 AI 发展的低谷 DQN 算法网络结构示意图 [1] 1.4 深度学习应用 深度学习算法已经广泛应用到人们生活的角角落落,例如手机中的语音助手、汽车上 的智能辅助驾驶、人脸支付等。下面将从计算机视觉、自然语言处理和强化学习 3 个领域 入手,为大家介绍深度学习的一些主流应用。 1.4.1 计算机视觉 图片识别(Image Classification) 是常见的分类问题。神经网络的输入为图片数据,输出
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    实时特征 实时数据 3 在线机器学习 实时样本 实时模型训练 实时更新参数 Task 训练预处理 Node 实时样本拼接 Node 在线模型训练 Node 离线样本拼接 Node 在线模型评估 Node 模型上线 Node 实时特征处理 Node 离线特征处理 Task Kafka输入 input process process output WeiFlow WeiFlow 工作流 Task 模型训练 Task 模型训练 Task Metrics输出 3 在线机器学习-工作流 互动行为日志 数据处理 点击行为日志 阅读行为日志 曝光行为日志 数据过滤 样本拼接 定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 • Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    输入的文本可以根据词性、时态等被进一步标签分割。 • 语境信息可以进一步通过word2vec建模。 • 概率语言模型可以用于词汇赋权重。 • 深度神经元网络可以进一步提升自然语言处理的效果 • 电商领域内的各种专业字典(如品牌,产品,型号等)可以协助识别各种实体 自然语言处理 (Natural Language Processing) 21 命名实体识别 命名识别模块 人名 地名 品牌名 商品名 机构组织名 24 • 337,190 问答对 • 填充(Padding)  通过填充将输入文本序列转化为固定长度, 并采用一些特殊符号 (EOS, PAD, GO, UNK等)  通过对答案进行逆序处理优化训练结果:  Q : [ PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    ,其复杂度更小,参数也更少。所以对算力的要求 也就更小。 2.速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 入,接着将向量列表中的向量传 递到自注意力层进行处理,然后 传递到前馈神经网络层中,将输 出结果传递到下一个编码器中。 22 2.Transformer的工作流程 从宏观视角看自注意力机制 随着模型处理输入序列的每个单词,自注 意力会关注整个输入序列的所有单词,帮 助模型对本单词更好地进行编码。 RNN会将它已经处理过的前面的所有单词/ 向量的表示与它正在处理的当前单词/向量 结合起来。而自注意力机制会将所有相关单 结合起来。而自注意力机制会将所有相关单 词的理解融入到我们正在处理的单词中。 当我们在编码器#5(栈中最上层编码器)中编码“it”这个单词的时,注意力机 制的部分会去关注“The Animal”,将它的表示的一部分编入“it”的编码中。 23 2.Transformer的工作流程 从微观视角看自注意力机制 计算自注意力的第一步就是从每个编码器的输入 向量(每个单词的词向量)中生成三个向量。也 就是说对于每个单词,我们创造一个查询向量
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
共 54 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
机器学习课程温州大学12深度自然语言自然语言处理嵌入图像视频技术沈小勇Qcon北京2018文本智能陈运文动手v201引言PyTorch深度学习微博在线实践黄波电子商务电子商务应用13Transformer
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩