如何利用深度学习提高高精地图生产的自动化率-邹亮0 码力 | 34 页 | 56.04 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 • Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练0 码力 | 36 页 | 16.69 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给 机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需 要较高智能水平的任务,如人脸识别、聊天机器人、自动驾驶等任务,很难设计明确的逻 辑规则,传统的编程方式显得力不从心,而人工智能(Artificial Intelligence,简称 AI)是有 望解决此问题的关键技术。 随着深度学习算法的崛起, 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学 预览版202112 第 1 章 人工智能绪论 2 科。 在机器学习中,有一个通过 SIFT、HOG 特征,这些特征能够适合某一类的任务,具有一定的通用性,但是如何设计特征,以及特 征方法的优劣性非常的关键,同时也比较困难。神经网络的出现,使得人为设计特征这一 部分工作可以让机器自动完成学习,不需要人类干预。但是浅层的神经网络的特征提取能 力较为有限,而深层的神经网络擅长提取高层、抽象的特征,因此具有更好的性能表现。 针对特定任务 的检测逻辑 输出逻辑 人为设计的 特征检测方法0 码力 | 439 页 | 29.91 MB | 1 年前3
阿里云上深度学习建模实践-程孟力阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景 OCR识别 人脸核身 智能风控 自动驾驶 语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 回 模 型 EasyRec GraphLearn Alink 排 序 模 型 模型训练评估 PAI-EAS – 模型推理 model1 model2 … PAI-ABTest A/B流量划分 PAI-Rec – 推荐引擎 BE召回/Hologres hot x2i vec 排序 粗排 精排 重排 MaxCompute Datahub 离线特征 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储0 码力 | 40 页 | 8.51 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 if、else、while、for 等关键字, 而在深度学习框架中编程模式主要是基于计算图、张量数据、 自动微分、优化器等组件构成。面向对象编程运行的结果是交 互式可视化的,而深度学习通过训练模型生成模型文件,然后 再使用模型预测,本质数据流图的方式工作。所以学习深度学 习首先必须厘清深度学习编程中计算图、张量数据、自动微分、 优化器这些基本术语概念,下面分别解释如下: ● 张量 张量是深度学习编程框架中需要理解最重要的一个概念,张量 。 ● 自动微分 使用 Pytorch 构建神经网络(计算图)模型之后,一般都是通 过反向传播进行训练,使用反向传播算法对神经网络中每个参 数根据损失函数功能根据梯度进行参数值的调整。为了计算这 些梯度完成参数调整,深度学习框架中都会自带一个叫做自动 微分的内置模块,来自动计算神经网络模型训练时候的各个参 数梯度值并完成参数值更新,这种技术就是深度学习框架中的 自动微分。 1.40 码力 | 13 页 | 5.99 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言市值1450亿美元 16 Brainco 脑机接口 教育、医疗、智能硬件 美国 2015年 天使轮融资 融资额600万美元 17 Waymo 自动驾驶 交通 美国 2016年 C轮融资 估值1050亿美元 18 ABB Robotics 机器人及自动化技术 机器人 瑞士 1988年 上市 市值514亿美元 19 Fanuc(发那科) 机器人技术 制造 日本 1956年 上市 市值362亿美元 节目中品牌赞助的可见性。 农业 半自动联合收割机可以利用人工智能 和计算机视觉来分析粮食品质,并找 出农业机械穿过作物的最佳路径。另 外也可用来识别杂草和作物,有效减 少除草剂的使用量。 制造业 计算机视觉也可以帮助制造商更安 全、更智能、更有效地运行,比如预 测性维护设备故障,对包装和产品质 量进行监控,并通过计算机视觉减少 不合格产品。 交通 自动驾驶汽车需要计算机视觉。特斯拉 自动驾驶汽车需要计算机视觉。特斯拉 (Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪 (Audi)等汽车制造商Y已经通过摄像头、激光 雷达、雷达和超声波传感器从环境中获取图 像,研发自动驾驶汽车来探测目标、车道标 志和交通信号,从而安全驾驶。 安防 中国在使用人脸识别技术方面无疑处于领先地 位,这项技术被广泛应用于警察工作、支付识 别、机场安检,甚至在北京天坛公园分发厕 纸、防止厕纸被盗,以及其他许多应用。0 码力 | 80 页 | 5.38 MB | 1 年前3
Keras: 基于 Python 的深度学习库1 什么是「后端」? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.2 从一个后端切换到另一个后端 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.3 keras.json 详细配置 . . . model.add(Activation('relu')) 3.1.2 指定输入数据的尺寸 模型需要知道它所期望的输入的尺寸。出于这个原因,顺序模型中的第一层(只有第一层, 因为下面的层可以自动地推断尺寸)需要接收关于其输入尺寸的信息。有几种方法来做到这一 点: • 传递一个 input_shape 参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元 组,其中 None com/keras-team/keras}}, } 3.3.3 如何在 GPU 上运行 Keras? 如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。 如果你以 Theano 后端运行,则可以使用以下方法之一: 方法 1: 使用 Theano flags。 快速开始 27 THEANO_FLAGS=device=gpu0 码力 | 257 页 | 1.19 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言市值1450亿美元 16 Brainco 脑机接口 教育、医疗、智能硬件 美国 2015年 天使轮融资 融资额600万美元 17 Waymo 自动驾驶 交通 美国 2016年 C轮融资 估值1050亿美元 18 ABB Robotics 机器人及自动化技术 机器人 瑞士 1988年 上市 市值514亿美元 19 Fanuc(发那科) 机器人技术 制造 日本 1956年 上市 市值362亿美元 7版本,64位 可以用默认安装,右图两个选择框都勾上 52 Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree0 码力 | 78 页 | 3.69 MB | 1 年前3
AI大模型千问 qwen 中文文档没有指定系统提示,我们将直接使 用 You are a helpful assistant. 作为系统提示。 1.3.2 流式输出 借助 TextStreamer ,您可以将与 Qwen 的对话切换到流式传输模式。下面是一个关于如何使用它的示例: # Repeat the code above before model.generate() # Starting here, we add streamer 的服务规模非常容易,只需运行: sky serve up -n qwen ./serve-72b.yaml 这将启动服务,使用多个副本部署在最经济的可用位置和加速器上。SkyServe 将自动管理这些副本,监控其 健康状况,根据负载进行自动伸缩,并在必要时重启它们。 将返回一个 endpoint,所有发送至该 endpoint 的请求都将被路由至就绪状态的副本。 2. 运行如下命令检查服务的状态: sky0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.04.4 链式法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5 自动微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5 3 改进计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 12.3 自动并行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 12 关注的深度学习模型的前身,被认为是过时的工具。 就在过去的五年里,深度学习给世界带来了惊喜,推动了计算机视觉、自然语言处理、自动语音识别、强化学 习和统计建模等领域的快速发展。有了这些进步,我们现在可以制造比以往任何时候都更自主的汽车(不过 可能没有一些公司试图让大家相信的那么自主),可以自动起草普通邮件的智能回复系统,帮助人们从令人 压抑的大收件箱中解放出来。在围棋等棋类游戏中,软件超越了世界上最优秀的人,这曾被认为是几十年后0 码力 | 797 页 | 29.45 MB | 1 年前3
共 35 条
- 1
- 2
- 3
- 4













