积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(47)机器学习(47)

语言

全部中文(简体)(46)英语(1)

格式

全部PDF文档 PDF(47)
 
本次搜索耗时 0.073 秒,为您找到相关结果约 47 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    �������������������� 11 概述 大家好,本章是主要介绍一下深度学习框架 Pytorch 的的历史与发展,主要模 块构成与基础操作代码演示。重点介绍 Pytorch 的各个组件、编程方式、环境 搭建、基础操作代码演示。本章对有 Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能 的 torch.onnx 模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 torchvison 库中的一些常见 模型库与功能函数,主要包括对象检测模块与模型库、图象数 据增强与预处理模块等。 以上并不是 pytorch 框架中全部模块与功能说明,作者这里只 列出了跟本书内容关联密切必须掌握的一些模块功能,希望读 者可以更好的针对性学习,掌握这些知识。
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    读取小批量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.5.3 整合所有组件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.6 softmax回归的从零开始实现 前向传播、反向传播和计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7.1 前向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.7.2 前向传播计算图 . . . 。机器学习是一门具有前瞻性的学科,在现 实世界的应用范围很窄。而那些应用,例如语音识别和计算机视觉,需要大量的领域知识,以至于它们通常 被认为是完全独立的领域,而机器学习对这些领域来说只是一个小组件。因此,神经网络——我们在本书中 关注的深度学习模型的前身,被认为是过时的工具。 就在过去的五年里,深度学习给世界带来了惊喜,推动了计算机视觉、自然语言处理、自动语音识别、强化学 习和统计建模
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    身主流模型架构基础。(RNN缺陷正在于流水线式的 顺序计算) 图:Transformer模型架构 1.Transformer介绍 12 Transformer Transformer —— 大力出奇迹的起点 • 在Transformer提出之后,大模型的基础模 型架构基本形成,注意力机制代替卷积神 经网络称为主流基础模型组件 – 有利于模型向更大的参数量扩展 – Transformer有兼容多模态信息的天生优势特 首先将这个模型看成是一个黑箱操作。在机器翻译中,就 是输入一种语言,输出另一种语言。 15 2.Transformer的工作流程 那么拆开这个黑箱,我们可以看到它是由编码组件、解码组件和它们之间的 连接组成。 16 2.Transformer的工作流程 编码组件部分由一堆编 码器(encoder)构成 (论文中是将6个编码 器叠在一起)。解码组 件部分也是由相同数量 (与编码器对应)的解 码器(decoder)组成 在每个编码器中的每个子层(自注意力、前馈网络)的周围都有一个残差连 接,并且都跟随着一个“层-归一化”步骤。 如果我们去可视化这些向量以及这个和自注意力相 关联的层-归一化操作,那么看起来就像下面这张 图描述一样: 37 2.Transformer的工作流程 归一化: 连接:基本的残差 连接方式 38 2.Transformer的工作流程 编码器通过处理输入序列开启 工作。顶端编码器的输出之后
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 17  PyTorch 1.x的自动微分机制 构 建 计 算 图 创 建 设 置 张 量 (tensor) 设 置 t e n s o r的 requires_ g r a d 的 属 性 为 True 定 义 函 数 ( L) 使 用 函 数 的 求 () 使 用 t e n s o r.grad.zero_() 清 除 张 量 梯 度 如 果 要 保 留 计 算 图 , 可 通 过 设 置 b a c kw a r d( ) 中 参 数 retain_graph=True 释 放 计 算 图 具体实例可参考书中2.7小节内容 2. Autograd自动求导 18 18  PyTorch 1.x的Tensor不参与求导的几种方式 换言之,如果一个节点依赖的所有节点都不需要求导,那么它的 requires_grad也会是False。在反向传播的过程中,该节点所在的子图会被 排除在外。 21 2. Autograd自动求导 Function类 我们已经知道PyTorch使用动态计算图(DAG)记录计算的全过程,DAG的节 点是Function对象,边表示数据依赖,从输出指向输入。因此Function类 在PyTor
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active 问题:  标注成本高  隐私保护 4. 数据获取困难 解决方案:  智能标注  自监督学习  多模态预训练  小样本学习 解决方案: 智能标注系统iTags 智能抠图 智能抠图 智能贴合 智能预标注 + 人机协同 解决方案: 自监督学习 Moby: swin-transformer based moco. Image features 推荐模型特征 图像搜索 Torch/Caffe /Alink/…) 计算引擎(MaxCompute / EMR / Flink) 基础硬件(CPU/GPU/FPGA/NPU) 阿里云容器服务(ACK) • 200+组件 • 数十个场景化模版 • 所见即所得 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard • 图像、视频、文本、 语音标注
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 龙良曲 2021 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 深度学习 图 1.1 人工智能、机器学习、神经网络和深度学习 1.1.2 机器学习 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 网络 输出子网络 基于规则的系统 传统机器学习 浅层神经网络 深度学习 图 1.3 深度学习与其它算法比较 1.2 神经网络发展简史 本书将神经网络的发展历程大致分为浅层神经网络阶段和深度学习两个阶段,以 2006 年为大致分割点。2006 年以前,深度学习
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    深度学习-神经网络的编程基础 黄海广 副教授 2 本章目录 01 二分类与逻辑回归 02 梯度下降 03 计算图 04 向量化 3 1.二分类与逻辑回归 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 4 符号定义 ?:表示一个??维数据,为输入数 据,维度为(??, 1); ?:表示输出结果,取值为(0 ? ? + (1−?) (1−?)) ⋅ ?(1 − ?) = ? − ? ?=??? + ? 9 2.梯度下降 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 10 梯度下降 ? 学习率 步长 11 梯度下降的三种形式 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降的每一步中,都用到了所有的训练样本 17 3.计算图 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 18 3.计算图 ? = ?? ? = 3? ? = ? + ? ? ?, ?, ? = 3(? + ??), ? = 5, ? = 3, ? = 2 ? = 5 ? = 3 ? = 2 ? 6 ? 11 ? 33 19 3.计算图 ? = ??
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 图像识别技术 01 腾讯优图图像技术能力 SACC2017 内容审核 - 图片鉴黄解决方案 区分图像中的色情、性感和正常内容 DeepEye可给出图片属于色情、性感和正常 SACC2017 内容识别 – 人脸识别 l 政治敏感人物识别, 直播, 视频等场景 Ø 上亿级别的人脸检索,秒级的检索速度从黑名 单,白名单数据库中返回目标人脸信息。 Ø 技术指标:优图人脸识别通过传统方法和深度 学习技术结合,以空间面孔墙和微众银行远程 核身为基础,在性能上达到LFW 99.80%。 Ø QQ,微云等: 非法设置领导人头像, 公众人 物, 明星等等他人肖像。
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    我自己以为我做的事情 实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 提取二维图像 、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 磁波或核磁 共振的深度、 吸收度或反射 度 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 交通 自动驾驶汽车需要计算机视觉。特斯拉 (Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪 (Audi)等汽车制造商Y已经通过摄像头、激光 雷达、雷达和超声波传感器从环境中获取图 像,研发自动驾驶汽车来探测目标、车道标 志和交通信号,从而安全驾驶。 安防 中国在使用人脸识别技术方面无疑处于领先地 位,这项技术被广泛应用于警察工作、支付识 别、机场安检,甚至在北京天坛公园分发厕
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 房价预测模型介绍 • 使用 TensorFlow 实现房价预测模型 • 使用 TensorBoard 可视化模型数据流图 • 实战 TensorFlow 房价预测 第四部分 目录 房价预测模型介绍 前置知识:监督学习(Supervised Learning) 监督学习是机器学习的一种方法,指从训练数据(输入和预期输出)中学到一个模型(函数), 78305 训练数据: 假设函数: 使用 TensorFlow 实现房价预测模型 使用 TensorFlow 训练模型的工作流 数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data 是一个基于 matplotlib的 Python 数据可视化库。它提供了更易用的高级接口,用 于绘制精美且信息丰富的统计图形。 mpl_toolkits.mplot3d 是一个基础 3D绘图(散点图、平面图、折线图等)工具集,也是 matplotlib 库的一部分。同时,它也支持轻量级的独立安装模式。 数据分析(2D) seaborn.lmplot 方法专门用于线性关系的可视化,适用于回归模型。
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
共 47 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
PyTorchOpenVINO开发实战系列教程第一一篇第一篇动手深度学习v2机器课程温州大学13Transformer03入门阿里云上建模实践程孟力深度学习02神经网络神经网神经网络编程基础国富图像审核应用01引言TensorFlow快速房价预测
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩