索引与切片索引与切片 主讲人:龙良曲 Indexing ▪ dim 0 first select first/last N select by steps select by specific index … select by mask ▪ .masked_select() select by flatten index 下一课时 Tensor变换 Thank You.0 码力 | 10 页 | 883.44 KB | 1 年前3
机器学习课程-温州大学-时间序列总结在Pandas中,最基本的时间序列类型就是以 时间戳为索引的Series对象。 date_ser = pd.Series([11, 22, 33], index=date_index) 2018-08-20 11 2018-08-28 22 2018-09-08 33 11 创建时间序列 还可以将包含多个datetime对象的列表传给 index参数,同样能创建具有时间戳索引的 Series对象。 如果希望DataFrame对象具有时间戳索引, 也可以采用上述方式进行创建。 data_demo = [[11, 22, 33], [44, 55, 66]] date_list = [datetime(2018, 1, 23), datetime(2018, 2, 15)] time_df = pd.DataFrame(data_demo, index=date_list) 13 通过时间戳索引选取子集 最简单的选取子集的方式,是直接使用位置 最简单的选取子集的方式,是直接使用位置 索引来获取具体的数据。 # 根据位置索引获取数据 time_se[3] 14 通过时间戳索引选取子集 还可以使用datetime构建的日期获取其对应 的数据。 date_time = datetime(2015, 6, 1) date_se[date_time] 15 通过时间戳索引选取子集 还可以在操作索引时,直接使用一个日期字 符串(符合可以被解析的格式)进行获取。0 码力 | 67 页 | 1.30 MB | 1 年前3
Keras: 基于 Python 的深度学习库2.6 层「节点」的概念 每当你在某个输入上调用一个层时,都将创建一个新的张量(层的输出),并且为该层添加 一个「节点」,将输入张量连接到输出张量。当多次调用同一个图层时,该图层将拥有多个节点 索引 (0, 1, 2…)。 在之前版本的 Keras 中,可以通过 layer.get_output() 来获得层实例的输出张量,或者通 过 layer.output_shape 来获取其输出形状。现在你依然可以这么做(除了 返回。但是比如说,如果将一个 Conv2D 层先应用 于尺寸为 (32,32,3) 的输入,再应用于尺寸为 (64, 64, 3) 的输入,那么这个层就会有多个 输入/输出尺寸,你将不得不通过指定它们所属节点的索引来获取它们: a = Input(shape=(32, 32, 3)) b = Input(shape=(64, 64, 3)) conv = Conv2D(16, (3, 3), padding='same') 224, 3)) encoded_image = vision_model(image_input) # 接下来,定义一个语言模型来将问题编码成一个向量。 # 每个问题最长 100 个词,词的索引从 1 到 9999. question_input = Input(shape=(100,), dtype='int32') embedded_question = Embedding(input_dim=100000 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 创建张量 预览版202112 4.5 张量的典型应用 4.6 索引与切片 4.7 维度变换 4.8 Broadcasting 4.9 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 GPU 设备是否可用,如图 1.32 所示。如果为 True,则 PyTorch GPU 版本安装成功;如果 为 False,则安装失败,需要再次检查 CUDA、环境变量等步骤,或者复制错误,从搜索引 擎中寻求帮助。 预览版202112 1.6 开发环境安装 21 图 1.32 PyTorch-GPU 安装结果测试 如果没有支持 CUDA 的显卡设备,则可以安装 CPU (1) ?1 (2) ?2 (2) ?3 (2)] [ ?11 ?12 ?21 ?22 ?31 ?32 ] + [?1 ?2] 其中?1 (1)、?1 (1)等符号的上标表示样本索引号(样本编号),下标表示某个样本向量的元素索 引号。上式对应的模型结构如图 3.5 所示。 ?1 ?2 ?3 ?1 ?12 ?21 ?32 ?0 码力 | 439 页 | 29.91 MB | 1 年前3
动手学深度学习 v2.03 广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.5 节省内存 人员对文献 进行详尽的审查。在美国国家医学图书馆(The United States National Library of Medicine),一些专业的 注释员会检查每一篇在PubMed中被索引的文章,以便将其与Mesh中的相关术语相关联(Mesh是一个大约 有28000个标签的集合)。这是一个十分耗时的过程,注释器通常在归档和标记之间有一年的延迟。这里,机器 学习算法可以提供临时标签 的每个元素分配相应的相关性分数,然后检索评级最高的元素。 PageRank15,谷歌搜索引擎背后最初的秘密武器就是这种评分系统的早期例子,但它的奇特之处在于它不依 赖于实际的查询。在这里,他们依靠一个简单的相关性过滤来识别一组相关条目,然后根据PageRank对包含 查询条件的结果进行排序。如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术 会议也致力于这一主题。 推荐系统0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 64 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列 df.loc[row_label 参数:how,融合方式,包括左连接、右连接、内连 接(默认)和外连接;on,连接键;left_on,左 键;right_on,右键;left_index,是否将left 行索引作 为左键;right_index,是否将right行 索引作为右键. 66 Python模块-Pandas ⚫数据融合 pd.concat([df1, df2]) 轴向连接多个 DataFrame. 67 Python模块-Pandas0 码力 | 78 页 | 3.69 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 Python模块-Pandas ⚫ 基本数据结构 Series 一维数据结构,包含行索 引和数据两个部分 DataFrame 二维数据结构,包含 带索引的多列数据, 各列的数据类型可能 不同 65 Python模块-Pandas ⚫ 数据索引 df[5:10] 通过切片方式选取多行 df[col_label] or df.col_label 选取列 df.loc[row_label 参数:how,融合方式,包括左连接、右连接、内连 接(默认)和外连接;on,连接键;left_on,左 键;right_on,右键;left_index,是否将left 行索引作 为左键;right_index,是否将right行 索引作为右键. 67 Python模块-Pandas ⚫数据融合 pd.concat([df1, df2]) 轴向连接多个 DataFrame. 68 Python模块-Pandas0 码力 | 80 页 | 5.38 MB | 1 年前3
全连接神经网络实战. pytorch 版DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 from torch . u t i 0 1] (1.2.3) Lambda 函数就是应用用户定义的 lambda 函数,首先使用 zeros 函数创建一个 10 维数组, 然后调用.scatter 函数为每个向量的第 label 个索引赋值为 1。 由于 pytorch 的网络训练会自动帮你进行转换,所以我们不需要自己去操作,因此并不需要 设置 target_transf orm。 前两节的源码参见 chapter1.py。 的意义是不再构建计算图。因为 pytorch 在运 算时会首先构建计算图,用于后面的反向传播算法等操作,我们测试正确率时不需要构建计算图。 pred.argmax(1) 表示向量中最大的一个数的索引,即为我们预测的当前数据类别。然后,.sum 函 数得到一个 batch 里的所有预测正确的次数。 现在我们的网络已经可以训练了,我们可以看到,最终训练的模型在测试集上的准确率为百 分之 700 码力 | 29 页 | 1.40 MB | 1 年前3
AI大模型千问 qwen 中文文档“bge-small“作为向量模型,或调整上下文窗口大小或文本块大小。 Qwen 1.5 模型系列支持最大 32K 上下文窗口大小。 现在我们可以从文档或网站构建索引。 以下代码片段展示了如何为本地名为’document’的文件夹中的文件(无论是 PDF 格式还是 TXT 格式)构 建索引。 from llama_index.core import VectorStoreIndex, SimpleDirectoryReader embed_model=Settings.embed_model, transformations=Settings.transformations ) 以下代码片段展示了如何为一系列网站的内容构建索引。 from llama_index.readers.web import SimpleWebPageReader from llama_index.core import VectorStoreIndex documents, embed_model=Settings.embed_model, transformations=Settings.transformations ) 要保存和加载已构建的索引,您可以使用以下代码示例。 1.15. LlamaIndex 43 Qwen from llama_index.core import StorageContext, load_index_from_storage0 码力 | 56 页 | 835.78 KB | 1 年前3
深度学习在电子商务中的应用目前商品搜索中的一些问题 7 人工智能/深度学习在搜索中的应用:网页/电商搜索 • 基于深度学习的(Query, Document)分数是Google搜索引擎中第3重要的排序信 号 • 亚马逊(Amazon/A9)电子商务搜索引擎中, 深度学习还在实验阶段, 尚未进入生产线。 8 • 搜索数值矢量化 传统搜索基于文字匹配, 商品包含搜索词或者不包含搜索词 利用深度学习技术, 用户搜索日志 用户点击日志 用户购物车 日志 用户购买日志 Word2vec模型 计算距离最近 的矢量 产品类别过滤 产品频率过滤 矢量转换回商 品 14 原型评测结果 矢量化搜索引擎与易购传统引擎搜索效果对比 (2016-07-25测试结果) 15 • 该技术不仅召回与搜索词完全匹配的结果,还可召回与搜索词文本不匹配、但含义近似的结果。 效果示例 如:经测评,当搜索词为“松下筒灯”,0 码力 | 27 页 | 1.98 MB | 1 年前3
共 18 条
- 1
- 2













