积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(39)机器学习(39)

语言

全部中文(简体)(38)英语(1)

格式

全部PDF文档 PDF(39)
 
本次搜索耗时 0.057 秒,为您找到相关结果约 39 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    [探索]聊天机器人 吴金龙@爱因互动 2017年04月17日 吴金龙 • 2005~2010:北大数学院 • 推荐系统 • 2010~2011:阿里云 • PC/手机输入法 • 2011~2017:世纪佳缘 • 用户推荐、网警等数据系统 • 技术部负责人 • 一个AI负责人 • 2017~现在:爱因互动 • 技术合伙人、算法负责人 • ChatbotsChina发起人 • •Microsoft Cortana •微软小冰 2016 •Facebook Messenger •Microsoft Tay IR-Bot: 智能检索机器人 IR-Bot:检索问答系统 IR-Bot:深度学习 • 句子表示、QA匹配 基于深度学习的智能问答 IR-Bot:深度学习 • 句子表示、QQ匹配 Semantic Question Matching with Deep Tracking (DST) • 对话状态应该包含持续对话所需要的各种信息 • DST问题:依据最新的系统和用户动作,更新对话状态 • Q:如何表示对话状态 状态追踪 (DST) 旧状态 用户动作 系统动作 新状态 策略优化 Dialogue Policy Optimization (DPO) • 系统如何做出反馈动作 • 作为序列决策过程进行优化:增强学习 Milica Gašić (2014)
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    1 2023年03月 深度学习-神经网络的编程基础 黄海广 副教授 2 本章目录 01 二分类与逻辑回归 02 梯度下降 03 计算图 04 向量化 3 1.二分类与逻辑回归 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 4 符号定义 ?:表示一个??维数据,为输入数 据,维度为(??, 1);
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    ����������������� 11 概述 大家好,本章是主要介绍一下深度学习框架 Pytorch 的的历史与发展,主要模 块构成与基础操作代码演示。重点介绍 Pytorch 的各个组件、编程方式、环境 搭建、基础操作代码演示。本章对有 Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构建各种深度学习模型并实现分布式的训练,因此一发布就引 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . 503 12.1.1 符号式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 12.1.2 混合式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 12.1.3 Sequential的混合式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 12.2 异步计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 、自动语音识别、强化学 习和统计建模等领域的快速发展。有了这些进步,我们现在可以制造比以往任何时候都更自主的汽车(不过 可能没有一些公司试图让大家相信的那么自主),可以自动起草普通邮件的智能回复系统,帮助人们从令人 压抑的大收件箱中解放出来。在围棋等棋类游戏中,软件超越了世界上最优秀的人,这曾被认为是几十年后 的事。这些工具已经对工业和社会产生了越来越广泛的影响,改变了电影的制作方式、疾病的诊断方式,并
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及 极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给 机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需 要较高智能水平的任务,如人脸识别、聊天机器人、自动驾驶等任务,很难设计明确的逻 辑规则,传统的编程方式显得力不从心,而人工智能(Artificial Intelligence,简称 AI)是有 足迹。早期,人们试图通过总 结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    gradient 31 定义 网络 1 损失 函数 2 优化 3 深度学习的三个步骤 深度学习很简单…… 来源:李宏毅《1天搞懂深度学习》 32 3. 神经网络 torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张 量。 nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等 nn.Parameter-一种张量,当把它赋值给一个Module时
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore, NASA 用其处理一些本来使用
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    3、用于整合C/C++和Fortran代码的工具包; 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy 配合使用更加方便。 NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
共 39 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
Chatbots对话交互系统分析应用机器学习课程温州大学02深度神经网络神经网神经网络编程基础推荐模型特点大规规模大规模设计PyTorchOpenVINO开发实战系列教程第一一篇第一篇动手v2深度学习03入门numpy使用总结01引言
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩