积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(43)机器学习(43)

语言

全部中文(简体)(42)英语(1)

格式

全部PDF文档 PDF(43)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 43 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    [探索]聊天机器人 吴金龙@爱因互动 2017年04月17日 吴金龙 • 2005~2010:北大数学院 • 推荐系统 • 2010~2011:阿里云 • PC/手机输入法 • 2011~2017:世纪佳缘 • 用户推荐、网警等数据系统 • 技术部负责人 • 一个AI负责人 • 2017~现在:爱因互动 • 技术合伙人、算法负责人 • ChatbotsChina发起人 • •Microsoft Cortana •微软小冰 2016 •Facebook Messenger •Microsoft Tay IR-Bot: 智能检索机器人 IR-Bot:检索问答系统 IR-Bot:深度学习 • 句子表示、QA匹配 基于深度学习的智能问答 IR-Bot:深度学习 • 句子表示、QQ匹配 Semantic Question Matching with Deep Tracking (DST) • 对话状态应该包含持续对话所需要的各种信息 • DST问题:依据最新的系统和用户动作,更新对话状态 • Q:如何表示对话状态 状态追踪 (DST) 旧状态 用户动作 系统动作 新状态 策略优化 Dialogue Policy Optimization (DPO) • 系统如何做出反馈动作 • 作为序列决策过程进行优化:增强学习 Milica Gašić (2014)
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.1 统计工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.2 训练 . 微调BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 16 附录:深度学习工具 741 16.1 使用Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 我们在本书中 关注的深度学习模型的前身,被认为是过时的工具。 就在过去的五年里,深度学习给世界带来了惊喜,推动了计算机视觉、自然语言处理、自动语音识别、强化学 习和统计建模等领域的快速发展。有了这些进步,我们现在可以制造比以往任何时候都更自主的汽车(不过 可能没有一些公司试图让大家相信的那么自主),可以自动起草普通邮件的智能回复系统,帮助人们从令人 压抑的大收件箱中解放出来。在围棋等棋类
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9 足迹。早期,人们试图通过总 结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用 的检测逻辑 输出逻辑 人为设计的 特征检测方法 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 网络 输出子网络 基于规则的系统 传统机器学习 浅层神经网络 深度学习 图 1.3 深度学习与其它算法比较 1.2 神经网络发展简史 本书将神经网络的发展历程大致分为浅层神经网络阶段和深度学习两个阶段,以 2006
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope • Qwen1 batch_decode() 函数对响应进行解码。关于输入部分,上述的 messages 是一个 示例,展示了如何格式化对话历史记录和系统提示。默认情况下,如果您没有指定系统提示,我们将直接使 用 You are a helpful assistant. 作为系统提示。 1.3.2 流式输出 借助 TextStreamer ,您可以将与 Qwen 的对话切换到流式传输模式。下面是一个关于如何使用它的示例: 生成的统一格式)模型。欲了解更多详情,请参阅官方 GitHub 仓库。以下我们将演示如何 使用 llama.cpp 运行 Qwen。 1.4.1 准备 这个示例适用于 Linux 或 MacOS 系统。第一步操作是:“克隆仓库并进入该目录: git clone https://github.com/ggerganov/llama.cpp cd llama.cpp 然后运行 make 命令:
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    内容但有一定的诱惑性,建议进行人工审 核; Ø 正常图片:不含不良内容的正常图片。 色情图片 性感图片 SACC2017 内容审核 – 图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 含的 各类图标 l 烟雾,吸烟识别 Ø 基于视频直播监管需求, 提供吸烟,烟雾,涉嫌吸毒 等场景的识别能力 SACC2017 深度学习介绍 深度网络训练选择 加快训练 - 分布式训练系统 图像海量数据的积累 02 深度学习技术介绍 加快计算 - 深度学习算法加速 RPN SACC2017 技 术 发 展 应 用 突 破 1956 达特茅 斯会议 标志AI 诞生 1957 深度学习算法在 语音和视觉识别 上有重大突破, 识别率超过99% 和95% 1970 受限于 计算能 力,进 入第一 个寒冬 XCON专 家系统出 现,每年 节约4000 万美元 第1阶段:人工智能起步 期 (1956-1980s) 第2阶段:专家系统推 广 (1980s-1990s) 第3阶段:深度学习 (2000s-至今 ) 1997 IBM的 Deep Blue战 胜国际 象棋冠
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景  OCR识别  人脸核身  智能风控  自动驾驶  语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision EasyRec GraphLearn EasyTransfer PAI-REC 推荐引擎 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 18 可视化 Visualization 234 19 Scikit-learn API 235 20 工具 236 20.1 CustomObjectScope [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 batch_size=128) 构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的任何模型,就是这么 的快。深度学习背后的思想很简单,那么它们的实现又何必要那么痛苦呢? 有关 Keras 更深入的教程,请查看: • 开始使用 Sequential 顺序模型 • 开始使用函数式 API 在代码仓库的 examples 目录中,你会找到更多高级模型:基于记忆网络的问答系统、基于 栈式 LSTM 的文本生成等等。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构建各种深度学习模型并实现分布式的训练,因此一发布就引 发学术界的追捧热潮,成为深度学习研究者与爱好者的首选开 发工具。在 pytorch 发布之后两年的 2018 年 facebook 又把 caffe2 项目整合到 pytorch 框架中,这样 pytorch 就进一步 整合原来 caffe 开发者生态社区,因为其开发效率高、特别容 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标 AUC、Loss、MAE、RMSE  支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; • 支持Online Learning,提供从近线到在线的模型数据通路; • 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
共 43 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
Chatbots对话交互系统分析应用推荐模型基础特点大规规模大规模深度学习设计动手v2PyTorch深度学习AI千问qwen中文文档国富图像审核阿里云上建模实践程孟力Keras基于PythonOpenVINO开发实战系列教程第一一篇第一篇超大超大规模美团建平
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩