基本数据类型基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string0 码力 | 16 页 | 1.09 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用[探索]聊天机器人 吴金龙@爱因互动 2017年04月17日 吴金龙 • 2005~2010:北大数学院 • 推荐系统 • 2010~2011:阿里云 • PC/手机输入法 • 2011~2017:世纪佳缘 • 用户推荐、网警等数据系统 • 技术部负责人 • 一个AI负责人 • 2017~现在:爱因互动 • 技术合伙人、算法负责人 • ChatbotsChina发起人 • •Microsoft Cortana •微软小冰 2016 •Facebook Messenger •Microsoft Tay IR-Bot: 智能检索机器人 IR-Bot:检索问答系统 IR-Bot:深度学习 • 句子表示、QA匹配 基于深度学习的智能问答 IR-Bot:深度学习 • 句子表示、QQ匹配 Semantic Question Matching with Deep Tracking (DST) • 对话状态应该包含持续对话所需要的各种信息 • DST问题:依据最新的系统和用户动作,更新对话状态 • Q:如何表示对话状态 状态追踪 (DST) 旧状态 用户动作 系统动作 新状态 策略优化 Dialogue Policy Optimization (DPO) • 系统如何做出反馈动作 • 作为序列决策过程进行优化:增强学习 Milica Gašić (2014)0 码力 | 39 页 | 2.24 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱� ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时 流式学习 1.2 Item和User新增,离开/遗忘, Embedding空间动态变化。 短期命中的⾼频key随时间缓慢变化 少量的⾼频key占据了主要访问需求0 码力 | 22 页 | 6.76 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版2021123.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 创建张量 预览版202112 4.5 张量的典型应用 4.6 索引与切片 4.7 维度变换 4.8 Broadcasting 9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 足迹。早期,人们试图通过总 结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用0 码力 | 439 页 | 29.91 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch 平台、ubuntu 平台还是 Mac 平台都靠一条命令 行就可以完成安装。首先是安装 Python 语言包支持,当前 Pytorch 支持的 Python 语言版本与系统对应列表如下: 表 -1(参考 Pytorch 官网与 Github) 系统 Python3�6 Python3�7 Python3.8 Linux CPU/GPU 支持 支持 支持 Windows CPU/GPU 支持 支持 支持 x版本, 其中 x 表示 3.6 版本下的各个小版本,依此类推 3.7、3.8 同样 如此。本书代码演示以 Python3.6.5 版本作为 Python 支持语 言包。它在 Windows 系统下的安装过程非常简单,只需如下 几步: 1. 下载 Python3.6.5 安装包,地址为: https://www.python.org/ftp/python/3.6.5/python-3.60 码力 | 13 页 | 5.99 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.9.1 分布偏移的类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.9.2 分布偏移示例 . . . 、自动语音识别、强化学 习和统计建模等领域的快速发展。有了这些进步,我们现在可以制造比以往任何时候都更自主的汽车(不过 可能没有一些公司试图让大家相信的那么自主),可以自动起草普通邮件的智能回复系统,帮助人们从令人 压抑的大收件箱中解放出来。在围棋等棋类游戏中,软件超越了世界上最优秀的人,这曾被认为是几十年后 的事。这些工具已经对工业和社会产生了越来越广泛的影响,改变了电影的制作方式、疾病的诊断方式,并 描述了深度学习计算的各种关键组件,并为我们随后 实现更复杂的模型奠定了基础。接下来,在 6节 和 7节 中,我们介绍了卷积神经网络(convolutional neural network,CNN),这是构成大多数现代计算机视觉系统骨干的强大工具。随后,在 8节 和 9节 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在0 码力 | 797 页 | 29.45 MB | 1 年前3
AI大模型千问 qwen 中文文档batch_decode() 函数对响应进行解码。关于输入部分,上述的 messages 是一个 示例,展示了如何格式化对话历史记录和系统提示。默认情况下,如果您没有指定系统提示,我们将直接使 用 You are a helpful assistant. 作为系统提示。 1.3.2 流式输出 借助 TextStreamer ,您可以将与 Qwen 的对话切换到流式传输模式。下面是一个关于如何使用它的示例: 生成的统一格式)模型。欲了解更多详情,请参阅官方 GitHub 仓库。以下我们将演示如何 使用 llama.cpp 运行 Qwen。 1.4.1 准备 这个示例适用于 Linux 或 MacOS 系统。第一步操作是:“克隆仓库并进入该目录: git clone https://github.com/ggerganov/llama.cpp cd llama.cpp 然后运行 make 命令: 已经正式成为 LM Studio 的一部分。祝你使用愉快! 1.5 Ollama Ollama 帮助您通过少量命令即可在本地运行 LLM。它适用于 MacOS、Linux 和 Windows 操作系统。现在, Qwen1.5 正式上线 Ollama,您只需一条命令即可运行它: ollama run qwen 接着,我们介绍在 Ollama 使用 Qwen 模型的更多用法 1.5.1 快速开始0 码力 | 56 页 | 835.78 KB | 1 年前3
Keras: 基于 Python 的深度学习库6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . . . . batch_size=128) 构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的任何模型,就是这么 的快。深度学习背后的思想很简单,那么它们的实现又何必要那么痛苦呢? 有关 Keras 更深入的教程,请查看: • 开始使用 Sequential 顺序模型 • 开始使用函数式 API 在代码仓库的 examples 目录中,你会找到更多高级模型:基于记忆网络的问答系统、基于 栈式 LSTM 的文本生成等等。 它类似于文字寓意,κέρας (号角) / κραίνω (履行),以及 ἐλέφας (象牙) / ἐλεφαίρομαι (欺骗)。 Keras 最初是作为 ONEIROS 项目(开放式神经电子智能机器人操作系统)研究工作的一部 分而开发的。 “Oneiroi 超出了我们的理解 - 谁能确定它们讲述了什么故事?并不是所有人都能找 到。那里有两扇门,就是通往短暂的 Oneiroi 的通道;一个是用号角制造的,一个是0 码力 | 257 页 | 1.19 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文1950S 1980s 1990s 2006~至今 以机器翻译为开端,作 为早期尝试,但不是很 成功 基于统计机器学习技术 及语料库,使用统计模 型,NLP发展产生革新 多数自然语言处理系统 基于规则,人工修订等 方式,包括问答、翻译、 搜索等 深度学习起步、发展及 成熟,同样影响NLP领 域,从传统的机器学习 逐渐过渡到深度学习 NLP技术层次 日常工作中各类常见的文本形式 io/posts/2015-08-Understanding-LSTMs/ 1,单元状态丢弃 2,新信息选择 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 文本挖掘的一些常见应用需求 风 险 智 能 审 核 功 能 达 观 智 能 文 档 审 阅 平 台 错 误 智 能 纠 正 功 能 文 档 智 能 比 对 功 能 常见应用场景 智能文档审阅系统:抽取核心算法 智能文档审阅系统:段落分析 PDF格式文本数据丢失段落信息 使用深度学习进行段落分析 生成式摘要 生成式摘要的深度学习网络基本结构 l 编码器/解码器结构,都是神经网络结构 l 输入的原文经过编码器编码变成向量0 码力 | 46 页 | 25.61 MB | 1 年前3
谭国富:深度学习在图像审核的应用性感图片 SACC2017 内容审核 – 图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 高准确率: 在内部业务上测试,准确率97%,覆 盖80%以上的案例 Ø 含的 各类图标 l 烟雾,吸烟识别 Ø 基于视频直播监管需求, 提供吸烟,烟雾,涉嫌吸毒 等场景的识别能力 SACC2017 深度学习介绍 深度网络训练选择 加快训练 - 分布式训练系统 图像海量数据的积累 02 深度学习技术介绍 加快计算 - 深度学习算法加速 RPN SACC2017 技 术 发 展 应 用 突 破 1956 达特茅 斯会议 标志AI 诞生 1957 深度学习算法在 语音和视觉识别 上有重大突破, 识别率超过99% 和95% 1970 受限于 计算能 力,进 入第一 个寒冬 XCON专 家系统出 现,每年 节约4000 万美元 第1阶段:人工智能起步 期 (1956-1980s) 第2阶段:专家系统推 广 (1980s-1990s) 第3阶段:深度学习 (2000s-至今 ) 1997 IBM的 Deep Blue战 胜国际 象棋冠0 码力 | 32 页 | 5.17 MB | 1 年前3
共 53 条
- 1
- 2
- 3
- 4
- 5
- 6













