Chatbots 中对话式交互系统的分析与应用2017年04月17日 吴金龙 • 2005~2010:北大数学院 • 推荐系统 • 2010~2011:阿里云 • PC/手机输入法 • 2011~2017:世纪佳缘 • 用户推荐、网警等数据系统 • 技术部负责人 • 一个AI负责人 • 2017~现在:爱因互动 • 技术合伙人、算法负责人 • ChatbotsChina发起人 • 微博:@breezedeus • 博客:breezedeus 加入互信息:同时考虑从answer到question的概率 Deep Reinforcement Learning for Dialogue Generation 闲聊机器人:其他因素 • 小心你的训练数据 • 如何引入上下文信息 • 如何加入外部信息 • 如何产生个性化答复 总结:三个Bot框架 • IR-Bot(成熟度: ) • 基于检索/排序的流程,历史悠久,技术成熟 • 引入深度学习,计入长效依赖,生成更好的语句表达 爱因互动 EIN+ • 为企业提供人工智能对话解决方案 • Conversation as a Service Bot应用场景 • 清晰的知识结构和边界 • 非标准化服务,信息不对称 • 能够通过数据积累提升服务质量 • 能够建立知识和技术壁垒 • 对话作为粘合剂 • 用户画像,推荐系统,营销转化 爱因互动:API in, API out 各路API,快速对接 爱因互动合作示例 •0 码力 | 39 页 | 2.24 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •0 码力 | 32 页 | 4.06 MB | 1 年前3
数据增强数据增强 主讲人:龙良曲 Big Data ▪ The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate0 码力 | 18 页 | 1.56 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 … 连接 连接 智能 人工智能 = 大数据 + 机器学习 Ataraxia AI Lab (AtLab) 色情 0.01 性感 0.98 正常 0.01 特征 id1 戴眼镜 性别:男 年龄:33 场景:户外/景点/雪山 审查: 非色情 非暴力 很健康 颜值: ?? “C罗正在带球突破,后有球员追堵” 场景一 00:00:00-00:01:05 描述:事件1-XXXX 事件2-XXXX 事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean0 码力 | 21 页 | 1.71 MB | 1 年前3
基本数据类型基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string0 码力 | 16 页 | 1.09 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112这是一本面向人工智能,特别是深度学习初学者的书,本书旨在帮助更多的读者朋友了 解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层0 码力 | 439 页 | 29.91 MB | 1 年前3
迁移学习-自定义数据集实战自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw0 码力 | 16 页 | 719.15 KB | 1 年前3
动手学深度学习 v2.0Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.1 生成数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.2 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-15深度学习-GANGoodfellow 等在2014 年提出的一种生成式模型。 GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗 学习的方式来训练. 目的是估测数据样本的潜在分布并生成新的数据样本。 2. GAN的理论与实现模型 10 概念简介 提出背景 GAN的概念简介及提出背景 2001年,Tony Jebara 在毕业论文中以最大熵 形式将判别模型与生成 模型结合起来联合学习 2012年,Jun Zhu 将最大间隔机 制与贝叶斯模型相结合进行产生 式模型的学习。 2014年,Ian Goodfellow 等人 提出生成式对抗网络,迎合了 大数据需求和深度学习热潮, 给出了一个大的理论框架及理 论收敛性分析。 起 源 发展 2. GAN的理论与实现模型 11 概念简介 提出背景 (一)人工智能的热潮 (二)生成式模型的积累 (三)神经网络的深化 (四)对抗思想的成功 GAN的理论与实现模型 13 GAN 的核心思想来源于博弈论的纳什均衡。 它设定参与游戏双方分别为一个生成器 (Generator) 和一个判别器(Discriminator),生成器的目的是尽 量去学习真实的数据分布,而判别器的目的是尽量 正确判别输入数据是来自真实数据还是来自生成器; 为了取得游戏胜利,这两个游戏参与者需要不断优 化, 各自提高自己的生成能力和判别能力,这个学 习优化过程就是寻找二者之间的一个纳什均衡。0 码力 | 35 页 | 1.55 MB | 1 年前3
杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用PYCON CHINA 基于深度学习的多维时间序列 预测在数据机房中的应用 目 录 1 背景介绍 2 研究目标 3 研究内容 4 后续工作 1. 背景介绍 数据机房面临的能耗问题 数据机房面临电量消耗巨大的问题 空调是数据机房中电量消耗最大的设备 空调为什么那么耗电?怎么优化节能? 低效的 冷却装 置 服务主 机工作 发热 影响空 调耗电 量原因 建筑材料 隔热和散 的全面感知 空调对温度的控制 存在延迟 多 维 感 知 温 度 预 测 控 制 2. 研究目标 对数据机房的温度进行预测 ⚫ 根据机房的历史运行数据变化预测未来 XX 分钟机房的温度值,从而实现空调的预测控制。 风机状态 服务负载 天气状况 室外温度 室外湿度 门禁状态 时序数据 温度预测 预测控制 节能调节 3. 研究内容 ⚫ 时间序列预测方法的比较 传统时间序列预测 ⚫ 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and0 码力 | 17 页 | 2.49 MB | 1 年前3
共 75 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8













