开发环境安装开发环境准备 主讲人:龙良曲 开发环境 ▪ Python 3.7 + Anaconda 5.3.1 ▪ CUDA 10.0 ▪ Pycharm Community ANACONDA CUDA 10.0 ▪ NVIDIA显卡 CUDA 安装确认 路径添加到PATH CUDA 测试 PyTorch安装 管理员身份运行cmd PyCharm ▪ 配置Interpreter0 码力 | 14 页 | 729.50 KB | 1 年前3
 PyTorch OpenVINO 开发实战系列教程第一篇PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������� 2 1.1.2 Pytorch 的模块与功能 ����������������������������������������������������������������������������������������������� Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解0 码力 | 13 页 | 5.99 MB | 1 年前3
 机器学习课程-温州大学-01机器学习-引言01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 发展到一定阶段的必然产物。 12 机器学习发展史 13 机器学习发展史 14 2. 机器学习的类型 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 15 2. 机器学习的类型 16 ✓ 分类(Classification) ✓ 身高1.65m,体重100kg的男人肥胖吗? ✓ 根据肿瘤的体积、患者的年龄来判断良性或恶性? ✓ 一般来说,若我们模型学习的效果好,则训练误差和测试误差接近一致。 27 3. 机器学习的背景知识 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 28 3. 机器学习的背景知识-希腊字母 大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 Β β beta beta 贝塔 Γ γ gamma gamma0 码力 | 78 页 | 3.69 MB | 1 年前3
 机器学习课程-温州大学-01深度学习-引言本章目录 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 3 1. 深度学习概述 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 4 深度学习与机器学习、人工智能的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 深度学习入门-NLP 2022chatGPT 22 2. 神经网络的基础 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 23 简单神经网络 z = x1w1 +  +xk wk +  + xK wK + b A simple function z (z ) Activation function Understanding 深度学习的硬件 28 2. 深度学习的背景知识 01 深度学习概述 02 神经网络的基础 03 深度学习的背景知识 04 深度学习的开发流程 29 3. 深度学习的背景知识-希腊字母 大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 Β β beta beta 贝塔 Γ γ gamma gamma0 码力 | 80 页 | 5.38 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版202112最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 预览版202112 简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 深度学习特点 1.4 深度学习应用 1.5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合0 码力 | 439 页 | 29.91 MB | 1 年前3
 Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 为什么选择 Keras? 5 2.1 Keras 优先考虑开发人员的经验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Keras 被工业界和学术界广泛采用 . . . . . 35 3.3.19 Keras 配置文件保存在哪里? . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . . . . . . . . . . . . . . . . 36 3.3.21 如何在 Keras 中安装 HDF5 或 h5py 来保存我的模型? . . . . 3 可用的惩罚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 16.4 开发新的正则化器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 目录 X 17 约束 Constraints0 码力 | 257 页 | 1.19 MB | 1 年前3
 动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . 767 Bibliography 769 xv xvi 前言 几年前,在大公司和初创公司中,并没有大量的深度学习科学家开发智能产品和服务。我们中年轻人(作者) 进入这个领域时,机器学习并没有在报纸上获得头条新闻。我们的父母根本不知道什么是机器学习,更不用 说为什么我们可能更喜欢机器学习,而不是从事医学或法律职业。机器学习是一门具有前瞻性的学科,在现 业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需0 码力 | 797 页 | 29.45 MB | 1 年前3
 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测参数变化趋势。 在模型测试过程中,用户也往往需要查看准确率和召回率等评估指标。 因此,TensorFlow 项目组开发了机器学习可视化工具 TensorBoard , 它通过展示直观的图形,能够有效地辅助机器学习程序的开发者和使 用者理解算法模型及其工作流程,提升模型开发工作效率。 TensorBoard 可视化训练 TensorBoard 可视化统计数据 TensorBoard 可视化数据分布 加载事件文件中的序列化数据,从而可以在各个面板中展示对应的可视化对象。 tf.summary 模块介绍 前述流程中使用的 FileWriter 实例和汇总操作(Summary Ops) 均属于 tf.summary 模块。其主要功能是获取和输出模型相关的 序列化数据,它贯通 TensorBoard 的整个使用流程。 tf.summary 模块的核心部分由一组汇总操作以及 FileWriter、Summary 和0 码力 | 46 页 | 5.71 MB | 1 年前3
 Chatbots 中对话式交互系统的分析与应用(DST) inform(order_op=预订, restaurant_name=云海肴, subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2,…) 焦点词(Focus) • 获得更为人性化的答案 • “谁是爱因互动CEO?” • 王守崑 • 王守崑是爱因互动CEO • 定型词(LAT) • 依据给定的一段话,回答对应的提问 • “2016年房价涨了,开发商很高兴” • 房价涨了谁高兴? • 哪年房价涨了? • 不同的问题使用不同的方法 爱因互动:DeepBot框架 • 不同的问题使用不同的方法 合作方式总结 快速部署 深度定制 持续迭代0 码力 | 39 页 | 2.24 MB | 1 年前3
 机器学习课程-温州大学-时间序列总结移量的DateOffset对象。如果想要创建一个 DateOffset对象,则需要先导入pd.tseries. offsets模块后才行。 from pandas.tseries.offsets import * DateOffset(months=4, days=5) 29 时间序列的频率、偏移量 还可以使用offsets模块中提供的偏移量类型 进行创建。 Week(2) + Hour(10) 例如,创建14天10小时的偏移量,可以换算为两 称为是平稳的。 66 • 本章主要介绍了Pandas中用于处理时间序列的相关内容,包括创 建时间序列、时间戳索引和切片操作、固定频率的时间序列、时期 及计算、重采样、滑动窗口和时序模型,最后开发了一个股票预测 分析的案例。 • 通过对本章内容的学习,读者应该掌握处理时间序列数据的一些技 巧,并灵活加以运用。 本章小结 67 谢 谢!0 码力 | 67 页 | 1.30 MB | 1 年前3
共 39 条
- 1
 - 2
 - 3
 - 4
 













