复杂环境下的视觉同时定位与地图构建
复杂环境下的视觉同时定位与地图构建 章国锋 浙江大学CAD&CG国家重点实验室 SLAM: 同时定位与地图构建 • 机器人和计算机视觉领域的基本问题 • 在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 摄像头:单目、双目、多目等。 • 惯性传感器(英文叫IMU,包括陀螺仪、加速度计等):智能手机标配。 常见的单目摄像头 激光雷达 普通手机摄像头也可作为传感器 双目摄像头 微软Kinect彩色-深度(RGBD)传感器 手机上的惯性传感器(IMU) SLAM运行结果 • 设备根据传感器的信息 • 计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 后台线程 • 进行局部或全局优化,减少误差累积 • 场景回路检测 输出 • 设备实时位姿 • 三维点云 RGB图 深度图 IMU测量值 优化以减少误差累积 回路检测 SLAM应用介绍 • 扫地机器人 小米扫地机器人 以激光雷达为核心 戴森360°Eye扫地机器人0 码力 | 60 页 | 4.61 MB | 1 年前3构建基于富媒体大数据的弹性深度学习计算平台
构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 …0 码力 | 21 页 | 1.71 MB | 1 年前3AutoEncoder自编码器
0 码力 | 29 页 | 3.49 MB | 1 年前3动手学深度学习 v2.0
. . . . . . . . . . . . . . . . . . . 362 9.6 编码器‐解码器架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.6.3 合并编码器和解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 9.7.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 9.7.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 12.1 自编码器原理 12.2 MNIST 图片重建实战 12.3 自编码器变种 12.4 变分自编码器 12.5 VAE 实战 12.6 参考文献 第 13 章 生成对抗网络 13.1 博弈学习实例 13.2 GAN 的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规0 码力 | 439 页 | 29.91 MB | 1 年前3PyTorch OpenVINO 开发实战系列教程第一篇
的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构建各种深度学习模型并实现分布式的训练,因此一发布就引 发学术界的追捧热潮,成为深度学习研究者与爱好者的首选开 发工具。在 pytorch 发布之后两年的 2018 年 facebook 又把 caffe2 项目整合到 pytorch 框架中,这样 pytorch 就进一步 整合原来 caffe 开发者生态社区,因为其开发效率高、特别容 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java0 码力 | 13 页 | 5.99 MB | 1 年前3机器学习课程-温州大学-13深度学习-Transformer
04 BERT 4 1.Transformer介绍 为什么需要用transformer 其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 通常来说,Seq2Seq任务最常见的是使用Encoder+Decoder的模式,先将一个序 列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 信息上,这就是大脑的注意力机 制。 8 1.Transformer介绍 每个词的Attention计算 每个词的Q会跟整个序列中每一个K计算得分,然后基于得分再分配特征 Q: query,要去查询的 K: key,等着被查的 V: value,实际的特征信息 9 1.Transformer介绍 Attention的优点 1.参数少:相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求0 码力 | 60 页 | 3.51 MB | 1 年前3AI大模型千问 qwen 中文文档
5,我们建议您使用 vLLM。vLLM 是一个用于 LLM 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints 5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1.5-Chat 进行对话。实质上,我们通过 from_pretrained 方法构建 tokenizer 和模型,然后利用 generate 方法,在 tokenizer 提供的 chat template 的辅助下进行 chat。以下是一个如何与 Qwen1.5-7B-Chat 进行对话的示例: streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer for text generation0 码力 | 56 页 | 835.78 KB | 1 年前3深度学习在电子商务中的应用
基于用户会话的矢量化 原型评测结果及效果示例 • 深度学习与聊天机器人 聊天机器人简介 聊天机器人主要模块及架构 深度学习探索 聊天机器人评测结果 6 • 语义词汇差异 理发器, 理发推子, 电推子 血糖计, 血糖仪 山地车,死飞,自行车,碟刹,折叠车,公路车, 单车 • 解决方案 同义词 ? 归一化 ? 預報 =》预报, 五岁 =》 5岁 目前商品搜索中的一些问题 j的余弦相似度 Random: 生成一个0 – 1之间的随机数 基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的 矢量化训练数据 正在进行的探索 17 聊天机器人(chatbot) • 聊天机器人是一种聊天代理,它通过电脑程序设计与人类通过音频或文本进行 智力对话。 --维基百科 • 未来,聊天应用将被看作是新的浏览器,而机器人程序将成为新的网站。这就 是互联网的新开始。--Ted Livingston, CEO of KiK • 聊天机器人将从根本上变革每个用户对人机交互的体验。 --Satya Nadella0 码力 | 27 页 | 1.98 MB | 1 年前3从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱
模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table 查询Dense Tensor0 码力 | 22 页 | 6.76 MB | 1 年前3
共 56 条
- 1
- 2
- 3
- 4
- 5
- 6