积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(56)机器学习(56)

语言

全部中文(简体)(55)英语(1)

格式

全部PDF文档 PDF(56)
 
本次搜索耗时 0.061 秒,为您找到相关结果约 56 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    复杂环境下的视觉同时定位与地图构建 章国锋 浙江大学CAD&CG国家重点实验室 SLAM: 同时定位与地图构建 • 机器人和计算机视觉领域的基本问题 • 在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 摄像头:单目、双目、多目等。 • 惯性传感器(英文叫IMU,包括陀螺仪、加速度计等):智能手机标配。 常见的单目摄像头 激光雷达 普通手机摄像头也可作为传感器 双目摄像头 微软Kinect彩色-深度(RGBD)传感器 手机上的惯性传感器(IMU) SLAM运行结果 • 设备根据传感器的信息 • 计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 后台线程 • 进行局部或全局优化,减少误差累积 • 场景回路检测 输出 • 设备实时位姿 • 三维点云 RGB图 深度图 IMU测量值 优化以减少误差累积 回路检测 SLAM应用介绍 • 扫地机器人 小米扫地机器人 以激光雷达为核心 戴森360°Eye扫地机器人
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 …
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 AutoEncoder自编码器

    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . 362 9.6 编码器‐解码器架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.6.3 合并编码器和解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 9.7.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 9.7.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 12.1 自编码器原理 12.2 MNIST 图片重建实战 12.3 自编码器变种 12.4 变分自编码器 12.5 VAE 实战 12.6 参考文献 第 13 章 生成对抗网络 13.1 博弈学习实例 13.2 GAN 的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构建各种深度学习模型并实现分布式的训练,因此一发布就引 发学术界的追捧热潮,成为深度学习研究者与爱好者的首选开 发工具。在 pytorch 发布之后两年的 2018 年 facebook 又把 caffe2 项目整合到 pytorch 框架中,这样 pytorch 就进一步 整合原来 caffe 开发者生态社区,因为其开发效率高、特别容 易构建各种复杂的深度学习模型网络,因此很快得到大量人工 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    04 BERT 4 1.Transformer介绍 为什么需要用transformer 其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 通常来说,Seq2Seq任务最常见的是使用Encoder+Decoder的模式,先将一个序 列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 信息上,这就是大脑的注意力机 制。 8 1.Transformer介绍 每个词的Attention计算 每个词的Q会跟整个序列中每一个K计算得分,然后基于得分再分配特征 Q: query,要去查询的 K: key,等着被查的 V: value,实际的特征信息 9 1.Transformer介绍 Attention的优点 1.参数少:相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    5,我们建议您使用 vLLM。vLLM 是一个用于 LLM 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints 5-7B-Chat 进行对话。 1.3.1 基本用法 你只需借助 transformers 库编写几行代码,就能与 Qwen1.5-Chat 进行对话。实质上,我们通过 from_pretrained 方法构建 tokenizer 和模型,然后利用 generate 方法,在 tokenizer 提供的 chat template 的辅助下进行 chat。以下是一个如何与 Qwen1.5-7B-Chat 进行对话的示例: streamer=streamer, ) 除了使用 TextStreamer 之外,我们还可以使用 TextIteratorStreamer ,它将可打印的文本存储在一 个队列中,以便下游应用程序作为迭代器来使用: # Repeat the code above before model.generate() # Starting here, we add streamer for text generation
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    基于用户会话的矢量化  原型评测结果及效果示例 • 深度学习与聊天机器人  聊天机器人简介  聊天机器人主要模块及架构  深度学习探索  聊天机器人评测结果 6 • 语义词汇差异  理发器, 理发推子, 电推子  血糖计, 血糖仪  山地车,死飞,自行车,碟刹,折叠车,公路车, 单车 • 解决方案  同义词 ?  归一化 ? 預報 =》预报, 五岁 =》 5岁 目前商品搜索中的一些问题 j的余弦相似度 Random: 生成一个0 – 1之间的随机数 基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的 矢量化训练数据 正在进行的探索 17 聊天机器人(chatbot) • 聊天机器人是一种聊天代理,它通过电脑程序设计与人类通过音频或文本进行 智力对话。 --维基百科 • 未来,聊天应用将被看作是新的浏览器,而机器人程序将成为新的网站。这就 是互联网的新开始。--Ted Livingston, CEO of KiK • 聊天机器人将从根本上变革每个用户对人机交互的体验。 --Satya Nadella
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数更新 查询Sparse Table 查询Dense Tensor Reader Learner Worker 返回参数 Request Handler Parameter Server 查询Sparse Table 查询Dense Tensor 更新参数 � 常规训练流⽔线 样本读取 样本解析 参数拉取 参数更新 查询Sparse Table 查询Dense Tensor
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
共 56 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
复杂环境视觉同时定位地图构建基于媒体数据弹性深度学习计算平台PyTorch入门实战54AutoEncoder编码码器编码器动手v2深度学习OpenVINO开发系列教程第一一篇第一篇机器课程温州大学13TransformerAI模型千问qwen中文文档电子商务电子商务应用推荐基础特点大规规模大规模系统设计
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩