积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)机器学习(32)

语言

全部中文(简体)(31)英语(1)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 开发环境安装

    Anaconda 5.3.1 ▪ CUDA 10.0 ▪ Pycharm Community ANACONDA CUDA 10.0 ▪ NVIDIA显卡 CUDA 安装确认 路径添加到PATH CUDA 测试 PyTorch安装 管理员身份运行cmd PyCharm ▪ 配置Interpreter PyCharm 下一课时 回归问题 Thank You.
    0 码力 | 14 页 | 729.50 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Release 2.0.0 Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 8.4.1 无隐状态的神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 8.4.2 有隐状态的循环神经网络 . . . . . . . . . . . . . . . . . . 750 16.3.2 安装CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 16.3.3 安装库以运行代码 . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 深度学习特点 1.4 深度学习应用 1.5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 人工智能、机器学习、神经网络和深度学习 1.1.2 机器学习 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类 有监督学习 有监督学习的数据集包含了样本?与样本的标签 机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本?的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为 监督信号,即模型需要学习的映射为??: ? → ?,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值??(?)与自身?之间的误差来优化网络参数?。 常见的无监督学习算法有自编码器、生成对抗网络等。
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    如何将教室里的学生按爱好、身高划分为5类? ✓ 降维( Dimensionality Reduction ) ✓ 如何将将原高维空间中的数据点映射到低维度的 空间中? 2. 机器学习的类型-无监督学习 18 ✓ 强化学习(Reinforcement Learning) ✓ 用于描述和解决智能体(agent)在与环境的交 互过程中通过学习策略以达成回报最大化或实现 特定目标的问题 。 Model)和非概率模型 (Non-Probabilistic Model)。 在监督学习中,概率模型可被表示为?(?|?),非概率模型则为? = ?(?)。 其中,?是输入,?是输出。 在无监督学习中,概率模型可被表示为?(?|?),非概率模型则为? = ?(?)。 其中,?是输入,?是输出。 21 决策树、朴素贝叶斯、隐马尔科夫模型、高斯混合模型属于概率模型。 感知机、支持向量 (?1, ?) + ???(?2, ?) 50 Python 的环境的安装 ⚫Anaconda ⚫Jupyter notebook ⚫Pycharm 详细教程:https://zhuanlan.zhihu.com/p/59027692 3. 机器学习的背景知识-Python基础 51 Python 的环境的安装 ⚫Anaconda https://www.anaconda.com/distribution/
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    �������������������������������������������������������������������������������� 5 1.4.1 PyCharm 的安装与配置 ����������������������������������������������������������������������������������������������� 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 关的功能模块可以快速整合数据、构建与设计模型、实现模型 训练、导出与部署等操作。这些功能的相关模块主要有如下: Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK, 只 要 有 了 Python 语 言 包 支 持, 无 论 是 在 windows 平台、ubuntu 平台还是 Mac 平台都靠一条命令 行就可以完成安装。首先是安装 Python 语言包支持,当前 Pytorch 支持的 Python 语言版本与系统对应列表如下: 表 -1(参考 Pytorch 官网与
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . 1 1.3 快速开始:30 秒上手 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 安装指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 使用 TensorFlow . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . . . . . . . . . . . . . . . . 36 3.3.21 如何在 Keras 中安装 HDF5 或 h5py 来保存我的模型? . . . . . . . . . . . 37 4 模型 39 4.1 关于 Keras 模型 . . . . . . . . . . . . . 的深度学习库 3 1.4 安装指引 在安装 Keras 之前,请安装以下后端引擎之一:TensorFlow,Theano,或者 CNTK。我们 推荐 TensorFlow 后端。 • TensorFlow 安装指引。 • Theano 安装指引。 • CNTK 安装指引。 你也可以考虑安装以下可选依赖: • cuDNN (如果你计划在 GPU 上运行 Keras,建议安装)。 • HDF5
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    RESERVED 42 房源质量分数 - B端场景 2019 KE.COM ALL COPYRIGHTS RESERVED 43 AI选房 - B端场景 辅助经纪人选房 高分房源直接推为好房 辅助经纪人盘房 2019 KE.COM ALL COPYRIGHTS RESERVED 44 AI选房 - C端场景 2019 KE.COM ALL COPYRIGHTS RESERVED 45 总结&思考
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    机器学习-聚类 黄海广 副教授 2 本章目录 01 无监督学习概述 02 K-means聚类 03 密度聚类和层次聚类 04 聚类的评价指标 3 1.无监督学习概述 01 无监督学习概述 02 K-means聚类 03 密度聚类和层次聚类 04 聚类的评价指标 4 1.无监督学习方法概述 监督学习 在一个典型的监督学习中,训练集有标签 在一个典型的监督学习中,训练集有标签? ,我们的目标是找到能够 区分正样本和负样本的决策边界,需要据此拟合一个假设函数。 无监督学习 与此不同的是,在无监督学习中,我们的数据没有附带任何标签?,无 监督学习主要分为聚类、降维、关联规则、推荐系统等方面。 监督学习和无监督学习的区别 5 1.无监督学习方法概述 ✓ 聚类(Clustering) ✓ 如何将教室里的学生按爱好、身高划分为5类? ✓ 降维( Dimensionality 什么商品呢? 主要的无监督学习方法 6 1.无监督学习方法概述 主要算法 K-means、密度聚类、层次聚类 聚类 主要应用 市场细分、文档聚类、图像分割、图像压缩、聚类分析、特征学习或者词 典学习、确定犯罪易发地区、保险欺诈检测、公共交通数据分析、IT资产 集群、客户细分、识别癌症数据、搜索引擎应用、医疗应用、药物活性预 测…… 7 1.无监督学习方法概述 聚类案例
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    训练模型理解上文或给定条件,从概率层 面推测最符合要求的输出结果。其本质是 借助超大规模的训练参数猜测上下文的过 程 文本风格 主流思路是分离文本属性及文本内容 迁移 隐式方法即使用某类无监督学习学习或强化学 习模式将文本属性及内容自动分离,常见的有 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 r架构(例如T5,使用双向/单向attention,偏好条件文本生成) 图:Transformer典型技术场景下的原理介绍如下所述 Transformer 34 GPT-1:借助预训练,进行无监督训练和有监督微调 ◼ GPT-1模型基于Transformer解除了顺序关联和依赖性的前提,采用生成式模型方式,重点考虑了从原始文本中有效学 习的能力,这对于减轻自然语言处理(NLP)中对监督学习的依赖至关重要 ining) 无监督预训练 (Unsupervised pre-training) 不需要标注数据集,即大规 模自学阶段,在保证AI算力 充足的条件下,根据 attention机制进行自学 有监督微调 (Supervised fine-tunning) 微调,用来修正模型理解力。 即小规模指导过程,让AI在 小样本数据下进行调整 结合形成了一种使用无监督预训练和有监督
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda 安装 conda conda install conda-forge::transformers 1.1.3 从源码安装 pip install git+https://github.com/huggingface/transformers 我们建议您使用 Python3.8 及以上版本和 Pytorch 2.0 及以上版本。 3 Qwen 1.2 快速开始 本指南帮助您快速上手 Qwen1.5 的使用,并提供了如下示例:Hugging 在部署时的应用实例。 1.2.1 Hugging Face Transformers & ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
深度学习PyTorch入门实战02开发环境安装动手v2深度学习机器课程温州大学01引言OpenVINO系列教程第一一篇第一篇Keras基于Python房源质量打分应用算法优化周玉驰10聚类12自然语言自然语言处理嵌入AI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩