积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(73)机器学习(73)

语言

全部中文(简体)(72)英语(1)

格式

全部PDF文档 PDF(73)
 
本次搜索耗时 0.100 秒,为您找到相关结果约 73 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 数据增强

    数据增强 主讲人:龙良曲 Big Data ▪ The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate
    0 码力 | 18 页 | 1.56 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 … … 连接 智能 人工智能 = 大数据 + 机器学习 Ataraxia AI Lab (AtLab) 色情 0.01 性感 0.98 正常 0.01 特征 id1 戴眼镜 性别:男 年龄:33 场景:户外/景点/雪山 审查: 非色情 非暴力 很健康 颜值: ?? “C罗正在带球突破,后有球员追堵” 场景一 00:00:00-00:01:05 描述:事件1-XXXX 事件2-XXXX 事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 基本数据类型

    基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string
    0 码力 | 16 页 | 1.09 MB | 1 年前
    3
  • pdf文档 迁移学习-自定义数据集实战

    自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    PYCON CHINA 基于深度学习的多维时间序列 预测在数据机房中的应用 目 录 1 背景介绍 2 研究目标 3 研究内容 4 后续工作 1. 背景介绍 数据机房面临的能耗问题 数据机房面临电量消耗巨大的问题 空调是数据机房中电量消耗最大的设备 空调为什么那么耗电?怎么优化节能? 低效的 冷却装 置 服务主 机工作 发热 影响空 调耗电 量原因 建筑材料 隔热和散 的全面感知 空调对温度的控制 存在延迟 多 维 感 知 温 度 预 测 控 制 2. 研究目标 对数据机房的温度进行预测 ⚫ 根据机房的历史运行数据变化预测未来 XX 分钟机房的温度值,从而实现空调的预测控制。 风机状态 服务负载 天气状况 室外温度 室外湿度 门禁状态 时序数据 温度预测 预测控制 节能调节 3. 研究内容 ⚫ 时间序列预测方法的比较 传统时间序列预测 ⚫ 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.1 生成数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.2 读取数据集 . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 请求 数据 落地 ⽆量 ⽤户⾏为数据上报 特征 库 内容 获取 请求 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) Item User Item特征 ⽤户反馈 Item推荐 Embedding参数 本⼩时访问过的key 上⼩时访问过的key 访 问 百 分 ⽐ 时间(⼩ 时) � Feature 2(数据的时空特点) 2.1 短时间内只有部分item和user被 命中,只有部分参数被⽤到 � Feature 3(机器学习的特点) Embedding以稀疏的⽅式表达信息 ⼤规模推荐模型深度学习系统基本解决维度
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 搜狗深度学习技术在广告推荐领域的应用

    舒鹏 目录 CONTENTS 01 搜索广告背景知识 02 深度学习在搜狗搜索广告的一些应用 03 基于多模型融合的CTR预估 04 若干思考 搜索广告背景知识 信息需求 用户查询 查询理解 广告召回 点击率预估 排序计价 结果展示 点击及后续行为 广告库 日志收集 展示日志 点击日志 深度学习在搜狗搜索广告的一些应用 无需分词:基于字符粒度表达的问答系统设计 L DNN、MxNet、TensorFlow 基于多模型融合的CTR预估 CTR预估流程 原始数据 领域特征 模型训练 查询日志 点击日志 查询特征 广告特征 匹配特征 线性模型 非线性模型 Data Feature Model 线上Server CTR预估 Rank Online 特征抽取 CTR预估涉及技术 CTR预估 数据 模型 平台 MPI XgBoost Parameter Server 线性(LR) 非线性(GBDT) 深度(DNN) 实时(FTRL) 特征 训练数据 融合模型 Bagging 级联 特征设计 特征选择 特征组合 MxNet TensorFlow Wide&Deep 去噪 特征自动组合 (FM) 特征设计 离散特征 离散特征 容易设计;刻画细致;特 征稀疏; 特征量巨大;模型复杂度 受限 连续特征
    0 码力 | 22 页 | 1.60 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    信息上,这就是大脑的注意力机 制。 8 1.Transformer介绍 每个词的Attention计算 每个词的Q会跟整个序列中每一个K计算得分,然后基于得分再分配特征 Q: query,要去查询的 K: key,等着被查的 V: value,实际的特征信息 9 1.Transformer介绍 Attention的优点 1.参数少:相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求 Is All You Need》,Ashish Vaswani et.al 2017 ◼ Transformer摆脱了人工标注数据集的缺陷,模型在质 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 23 2.Transformer的工作流程 从微观视角看自注意力机制 计算自注意力的第一步就是从每个编码器的输入 向量(每个单词的词向量)中生成三个向量。也 就是说对于每个单词,我们创造一个查询向量 (Q)、一个键向量(K)和一个值向量(V)。这三个向 量是通过词嵌入与三个权重矩阵后相乘创建的, 它们的维度是64,而词嵌入和编码器的输入/输 出向量的维度是512. 但实际上不强求维度更小,
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
共 73 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
TensorFlowonYarn深度学习遇上数据PyTorch入门实战44增强构建基于媒体弹性计算平台06基本类型数据类型63迁移定义定义数据13杨赛赛多维时间序列预测数据机房中应用动手v2推荐模型基础特点大规规模大规模系统设计搜狗技术广告领域机器课程温州大学Transformer
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩