Visdom可视化
Visdom可视化 主讲人:龙良曲 TensorBoard? TensorboardX ▪ pip install tensorboardX TensorboardX Visdom from Facebook Step 1. install Step2. run server damon Step2. run server damon install from source lines:0 码力 | 17 页 | 1.47 MB | 1 年前3《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测
房价预测 扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 房价预测模型介绍 • 使用 TensorFlow 实现房价预测模型 • 使用 TensorBoard 可视化模型数据流图 • 实战 TensorFlow 房价预测 第四部分 目录 房价预测模型介绍 前置知识:监督学习(Supervised Learning) 监督学习是机器学习的一种方法,指从训 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib & seaborn & mplot3d matplotlib的 Python 数据可视化库。它提供了更易用的高级接口,用 于绘制精美且信息丰富的统计图形。 mpl_toolkits.mplot3d 是一个基础 3D绘图(散点图、平面图、折线图等)工具集,也是 matplotlib 库的一部分。同时,它也支持轻量级的独立安装模式。 数据分析(2D) seaborn.lmplot 方法专门用于线性关系的可视化,适用于回归模型。 数据分析(2D)0 码力 | 46 页 | 5.71 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9.6 Dropout 图 1.20 百度 Apollo 自动驾驶汽车④ 1.5 深度学习框架 工欲善其事,必先利其器。在介绍了深度学习相关背景知识后,现在来挑选一下实现 深度学习算法所使用的工具吧。 1.5.1 主流框架 ❑ Theano 是最早的深度学习框架之一,由 Yoshua Bengio 和 Ian Goodfellow 等人开发, ③ 图片来自 https://www PyTorch 在工业部署上也有成 熟的 ONNX 生态,丝毫不逊色于 TensorFlow。 1.5.3 功能演示 深度学习的核心是算法的设计思想,深度学习框架只是我们实现算法的工具。对工具 的理解有助于加深对算法的掌握程度。下面将演示 PyTorch 深度学习框架的三大核心功 能,从而帮助我们理解框架在算法设计中扮演的角色。 1) 加速计算 神经网络本质上由大量的矩0 码力 | 439 页 | 29.91 MB | 1 年前3动手学深度学习 v2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.1 统计工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.1.2 训练 . 查询、键和值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 10.1.3 注意力的可视化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 10.2 注意力汇聚:Nadaraya‐Watson 微调BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 16 附录:深度学习工具 741 16.1 使用Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤
流程理论:商品检测与商品识别 • 串联 AI 流程实战:商品检测与商品识别 • 展现 AI 效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI SaaS 理论:数据库 ORM 选型 • 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS • 搭建 AI SaaS 实战:10 classifier 网络结构 串联 AI 流程实战:商品检测与商品识别 “Hello TensorFlow” Try it! 展现 AI 效果理论:使用 OpenCV 可视化识别结果 展现 AI 效果实战:使用 OpenCV 可视化识别结果 “Hello TensorFlow” Try it! 搭建 AI SaaS 理论:Web 框架选型 Python Web 框架 Python Web 框架 框架 - Flask Python Web 框架 - Flask Flask 常用扩展 Flask 项目常见目录结构 启动文件 manage.py 示例 搭建 AI SaaS 理论:数据库 ORM 选型 ORM 是什么 ORM 是什么 常见的 Python ORM • SQLAlchemy • Flask-SQLAlchemy • Django ORM • peewee 常见的0 码力 | 54 页 | 6.30 MB | 1 年前3Keras: 基于 Python 的深度学习库
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 18 可视化 Visualization 234 19 Scikit-learn API 235 20 工具 236 20.1 CustomObjectScope [source] . . . . . . . . . . . . . . . . . . (如果你计划在 GPU 上运行 Keras,建议安装)。 • HDF5 和 h5py (如果你需要将 Keras 模型保存到磁盘,则需要这些)。 • graphviz 和 pydot (用于可视化工具绘制模型图)。 然后你就可以安装 Keras 本身了。有两种方法安装 Keras: • 使用 PyPI 安装 Keras (推荐): sudo pip install keras 如果你使用 stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128) 用于生成批量时序数据的实用工具类。 这个类以一系列由相等间隔以及一些时间序列参数(例如步长、历史长度等)汇集的数据 点作为输入,以生成用于训练/验证的批次数据。 参数 • data: 可索引的生成器(例如列表或 Numpy0 码力 | 257 页 | 1.19 MB | 1 年前3全连接神经网络实战. pytorch 版
. . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 3 4.5 总结 27 Literature . . . . . . . . . . . . . . . . . . pytorch 6 1.2 导入样本数据 7 本章节将神经网络训练之前的准备工作进行全面介绍。但我们并不介绍如何安装 pytorch,一是由 于不同版本的 pytorch 会依赖于不同的 cuda 工具,二是因为官网资料非常齐全,也有很多博客来 介绍,因此没有必要赘述。 1.1 导入 pytorch 首先我们需要明白一个术语:tensor。这个词被翻译为中文叫张量。1 维标量是一种 tensor; DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 from torch . u t i l s0 码力 | 29 页 | 1.40 MB | 1 年前3机器学习课程-温州大学-11机器学习-降维
个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增 加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。 5 1.降维概述 维数灾难 维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库等诸 多领域。在机器学习的建模过程中,通常指的是随着特征数量的增多,计 算量会变得很大,如特征达到上亿维的话,在进行计算的时候是算不出来 的。有的时候,维度太大也会导致机器学习性能的下降,并不是特征维度 样本复杂度随着维度成指数增长),维度越高,算法的搜索难度 和成本就越大。 • 降维能够增加数据的可读性,利于发掘数据的有意义的结构 为什么要降维 8 1.降维概述 1.减少冗余特征,降低数据维度 2.数据可视化 降维的主要作用 9 1.降维概述 减少冗余特征 假设我们有两个特征: ?1:长度用厘米表示的身高;?2:是用英寸表示的身高。 这两个分开的特征?1和?2,实际上表示的内容相同,这样其实可 数据可视化 t-distributed Stochastic Neighbor Embedding(t-SNE) t-SNE(TSNE)将数据点之间的相似度转换为概率。原始空间中的相似度由 高斯联合概率表示,嵌入空间的相似度由“学生t分布”表示。 虽然Isomap,LLE和variants等数据降维和可视化方法,更适合展开单个连 续的低维的manifold。但如果要准确的可视化样本间的相似度关系,如对于0 码力 | 51 页 | 3.14 MB | 1 年前3PyTorch OpenVINO 开发实战系列教程第一篇
PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构建各种深度学习模型并实现分布式的训练,因此一发布就引 发学术界的追捧热潮,成为深度学习研究者与爱好者的首选开 发工具。在 pytorch 发布之后两年的 2018 年 facebook 又把 caffe2 项目整合到 pytorch 框架中,这样 pytorch 就进一步 整合原来 caffe 开发者生态社区,因为其开发效率高、特别容 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能 的 torch0 码力 | 13 页 | 5.99 MB | 1 年前3阿里云上深度学习建模实践-程孟力
PAI-REC 推荐引擎 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 基础硬件(CPU/GPU/FPGA/NPU) 阿里云容器服务(ACK) • 200+组件 • 数十个场景化模版 • 所见即所得 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard • 图像、视频、文本、 语音标注 • 多场景模板:物体检 测、语音识别 • 数据集管理 • 主动学习 • 智能标注 itags AI SaaS服务(OCR 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer) 分布式训练(DLC) 在线服务(EAS) 生态市场 开发者工具 • CLI • PAIFlow • OpenAPI AI能力 体验中心 开源 PAI平台(Platform of Artificial0 码力 | 40 页 | 8.51 MB | 1 年前3
共 36 条
- 1
- 2
- 3
- 4