积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部中文(简体)(25)英语(1)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    分离计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Python控制流的梯度计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.6 概率 . . . . . . . . . 5 训练模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 vi 8 循环神经网络 289 8.1 序列模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 8.3.4 读取长序列数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 8.4 循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 8.4
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    10.12 深度残差网络 10.13 DenseNet 10.14 CIFAR10 与 ResNet18 实战 10.15 参考文献 第 11 章 循环神经网络 11.1 序列表示方法 11.2 循环神经网络 11.3 梯度传播 11.4 RNN 层使用方法 11.5 RNN 情感分类问题实战 11.6 梯度弥散和梯度爆炸 11.7 RNN 短时记忆 上发表了通过 BP 算法来进行表征学习的论文, BP 算法才获得了广泛的关注。 1982 年,随着 John Hopfild 的循环连接的 Hopfield 网络的提出,开启了 1982 年~1995 年的第二次人工智能复兴的大潮,这段期间相继提出了卷积神经网络、循环神经网络、反 向传播算法等算法模型。1986 年,David Rumelhart 和 Geoffrey Hinton 等人将 BP LeCun 等人将 BP 算法应用在手写数字图片识别上,取得 了巨大成功,这套系统成功商用在邮政编码识别、银行支票识别等系统上;1997 年,现在 应用最为广泛的循环神经网络变种之一 LSTM 被 Jürgen Schmidhuber 提出;同年双向循环 神经网络也被提出。 遗憾的是,神经网络的研究随着以支持向量机(Support Vector Machine,简称 SVM)为 代表的传统机器学习算
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . 86 5.5.2 LocallyConnected2D [source] . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.6 循环层 Recurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.1 RNN 转 换为实验结果,是做好研究的关键。 如果你在以下情况下需要深度学习库,请使用 Keras: • 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。 • 同时支持卷积神经网络和循环神经网络,以及两者的组合。 • 在 CPU 和 GPU 上无缝运行。 查看文档,请访问 Keras.io。 Keras 兼容的 Python 版本: Python 2.7-3.6。 1.2 指导原则 optimizer='sgd', metrics=['accuracy']) 如果需要,你还可以进一步地配置你的优化器。Keras 的核心原则是使事情变得相当简单, 同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。 model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS Learning Container 数据量大而全 先进的模型结构 业务场景复杂 计算力强、性价比高 提供 支撑 支撑 支撑 促进 促进 开源生态 系统 硬件 模型 生态系统 外循环 内循环 贡献 对接 PAI平台的优势 1. 机器学习PAI: https://help.aliyun.com/product/30347.html 2. 阿里灵杰:https://www.zhihu
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? • 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 我们课题组的工作 • 面向大尺度场景的运动恢复结构 • ENFT-SFM:能够高效地处理大尺度场景下拍摄的循环回路和多 视频序列。 • 单目视觉的同时定位与地图构建 • RKSLAM:可以实时运行在移动设备上,并能处理快速运动和强 旋转 。 ENFT-SFM: Efficient Non- Consecutive Feature Tracking for Robust SFM 循环回路序列和多视频序列 • 如何将不同子序列上的相同特征点高效地匹配上? • 如何高效地进行全局优化,消除重建漂移问题? VisualSFM 结果 ENFT:高效的非连续帧特征跟踪 基于两道匹配的连续帧跟踪 只优化相机之间的相对姿态,三维点都消元掉; • 是集束调整的一个近似,不是最优解。 基于自适应分段的集束调整 • 将长序列分成若干段短序列; • 每个短序列进行独立的SfM并根据公共匹配对进行对齐,每个段由7个自由 度的相似变换控制; • 如果投影误差比较大,检测分裂点将序列分段,然后优化; • 重复上述步骤直至投影误差小于阈值或不能再分裂为止。 Garden数据集的SfM结果 6段长视频序列,将近10万帧,特征匹配7
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    训练步骤到此结束。我们从这一步骤中得到稍微好一点的嵌入(`not` ,`thou`,`aaron`和`taco`)。我们现在进行下一步(下一个正样本及 其相关的负样本),并再次执行相同的过程。 当我们循环遍历整个数据集多次时,嵌入继续得到改进。然后我们可以停 止训练过程,丢弃`Context`矩阵,并使用`Embeddings`矩阵作为下一个任务 的预训练嵌入。 27 4.GloVe 03 主流思路是分离文本属性及文本内容 迁移 隐式方法即使用某类无监督学习学习或强化学 习模式将文本属性及内容自动分离,常见的有 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 的增加,会进一步促进模型语义理解能力以及抽象学习能力的极大提升, 实现ChatGPT的数据飞轮效应(用更多数据可以训练出更好的模型, 吸引更多用户,从而产生更多用户数据用于训练,形成良性循环)。 ✓ 研究发现,每增加参数都带来了文本合成和/或下游NLP任务的改进, 有证据表明,日志丢失与许多下游任务密切相关,随着规模的增长,日 志丢失呈现平稳的改善趋势。 资料来源:《On the
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    当样本数量足够大时,根据大数定理,经验风险会近似于模型的期望风险。此时,经验风险最 小化能确保有好的学习性能。然而,当样本数量不足时,单单利用经验风险最小化可能会导致 “过拟合”的问题。 为此,我们再原有基础上加上用于控制模型复杂度的正则项(Regularizer),得到结构最小化准 则。具体定义是: 其中,?(?)代表对模型复杂度的惩罚。模型越复杂,?(?)越大,模型越简单,?(?)就越小。?是 一个正的常数 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 56 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 57 Python函数 ⚫调用函数 调用内置函数 ⚫定义函数 def 函数名(): 函数内容
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-04深度学习-深层神经网络

    参数和超参数 什么是超参数? 比如算法中的learning rate ?(学习率)、iterations(梯度下降法循环 的数量)、?(隐藏层数目)、?ሾ?] (隐藏层单元数目)、choice of activation function(激活函数的选择)都需要你来设置,这些数字实 际上控制了最后的参数?和?的值,所以它们被称作超参数。 26 7.参数和超参数 深度学习和大脑的关联性 深度学习和大脑有什么关联性吗?
    0 码力 | 28 页 | 1.57 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 58 Python函数 ⚫调用函数 调用内置函数 ⚫定义函数 def 函数名(): 函数内容
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    的能力。此时,最好的方法就是给我们一个由简及难的程序示例,我们能够快速搭建出一个网络, 我们可以开始训练,以及指导如何计算训练后的结果准确率等信息。 这也是我要开始写这么一本小书的初衷,我会把本小书控制在 3 小时的学习时间之内。也就 是说,只知道一丁点 python 知识和神经网络的概念,而从未使用过 pytorch 的读者,只需要三个 小时,就可以用 pytroch 搭建一个有模有样的神经网络系统了。 model = NeuralNetwork () . to ( device ) print ( model ) 如果 cuda 可用,就会输出 cuda。 之后在训练和测试的每个 for 循环中,要把数据也迁移到 cuda 中: f or batch , (X, y) in enumerate ( dataloader ) : # Compute prediction and l o
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
动手深度学习v2PyTorch深度学习Keras基于Python阿里云上建模实践程孟力复杂环境视觉同时定位地图构建机器课程温州大学12自然语言自然语言处理嵌入01引言04深层神经网络神经网神经网络连接实战pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩