积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(35)机器学习(35)

语言

全部中文(简体)(34)英语(1)

格式

全部PDF文档 PDF(35)
 
本次搜索耗时 0.084 秒,为您找到相关结果约 35 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 本书虽然免费开放电子版,供个人学习使用,但是未经许可,不能用于任何个人或者企 业的商业用途,违法盗版和销售,必究其法律责任。 龙龙老师 2021 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 MNIST测试

    0 码力 | 7 页 | 713.39 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? . . . . . . . . . . . . . Keras? • 如何在多 GPU 上运行 Keras 模型? • “sample”, “batch”, “epoch” 分别是什么? • 如何保存 Keras 模型? • 为什么训练误差比测试误差高很多? • 如何获取中间层的输出? • 如何用 Keras 处理超过内存的数据集? • 在验证集的误差不再下降时,如何中断训练? • 验证集划分是如何计算的? • 在训练过程中数据是否会混洗? AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测 试时是关闭的。 此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练 完后计算的,因而误差较小。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 13.13.7 在 Kaggle 上对测试集进行分类并提交结果 . . . . . . . . . . . . . . . . . . . . . . . 640 13.14 实战Kaggle比赛:狗的品种识别(ImageNet Dogs) 14.6 训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 13.14.7 对测试集分类并在Kaggle提交结果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 14 自然语言处理:预训练 649 14.1 词嵌入(word2vec) 亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; (4)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    用户购买日志 Word2vec模型 计算距离最近 的矢量 产品类别过滤 产品频率过滤 矢量转换回商 品 14 原型评测结果 矢量化搜索引擎与易购传统引擎搜索效果对比 (2016-07-25测试结果) 15 • 该技术不仅召回与搜索词完全匹配的结果,还可召回与搜索词文本不匹配、但含义近似的结果。 效果示例 如:经测评,当搜索词为“松下筒灯”, 易购网站返回6个相关结果, 美研方案返回64个相关结果 19 问题分析与用户分析 网页前端 移动应用前端 系统架构图 会话分析 用户意图识别 检索模块 段落或句 子检索 文档检 索 专业检索接口: 商品参数接口 商品价格接口 商品信息接口 商品卖点接口 促销活动接口 订单信息接口 语法语义分析 用户画像 Json/rest 答案获取和排序模块 答案实体抽取 返回最相关答案 相关性句子排序 …… 机器学习/深度学习模型
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    data = audio.generate('1234’) audio.write('1234', 'out.wav’) pydot pydot 是用纯 Python 实现的 GraphViz 接口,支持使用 GraphViz 解析和存储 DOT语言 (graph description language)。其主要依赖 pyparsing 和 GraphViz 这两个工具库。 pyparsing:仅用于加载DOT文件,在 验证码(CAPTCHA)简介 全自动区分计算机和人类的公开图灵测试(英语:Completely Automated Public Turing test to tell Computers and Humans Apart,简称CAPTCHA),俗称验证码,是一种区分用户是 计算机或人的公共全自动程序。在CAPTCHA测试中,作为服务器的计算机会自动生成一 个问题由用户来解答。这个问题 。 一种常用的CAPTCHA测试是让用户输入一个扭曲变形的图片上所显示的文字或数字,扭 曲变形是为了避免被光学字符识别(OCR, Optical Character Recognition)之类的计算机程 序自动识别出图片上的文数字而失去效果。由于这个测试是由计算机来考人类,而不是 标准图灵测试中那样由人类来考计算机,人们有时称CAPTCHA是一种反向图灵测试。 https://zh.wikipedia
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    智能芯片技术、机器学习 芯片 英国 2016年 D轮融资 估值17亿美元 15 NVIDIA(英伟达) 智能芯片技术 芯片 美国 1993年 上市 市值1450亿美元 16 Brainco 脑机接口 教育、医疗、智能硬件 美国 2015年 天使轮融资 融资额600万美元 17 Waymo 自动驾驶 交通 美国 2016年 C轮融资 估值1050亿美元 18 ABB Robotics 机器人及自动化技术 )代表对模型复杂度的惩罚。模型越复杂,?(?)越大,模型越简单,?(?)就越小。?是 一个正的常数,也叫正则化系数,用于平衡经验风险和模型复杂度。 一般来说,结构风险小的模型需要经验风险和模型复杂度同时小,因此对训练数据和测试数据 都能有较好的拟合。 机器学习的概念-损失函数 min ? 1 ? ෍ ?=1 ? ? ??, ? ?? 25 机器学习的概念-优化算法 算法指的是模型学习中的具体计算方法。一般来说,基于参数模型构建的统计 raining Error)和测试数据的 误差(Testing Error)作为模型评估的标准。 测试误差的具体定义为:????? = 1 ?′ ෍ ?=1 ?′ L ??, መ? ?? 其中,?′为测试数据数量,L(??, መ?(??))是损失函数,??代表真实标签, መ?(??)代表 预测标签。 一般来说,若我们模型学习的效果好,则训练误差和测试误差接近一致。 27 3.
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    02 Autograd自动求导 03 神经网络 04 训练一个分类器 35 4. 训练一个分类器 训练一个分类器流程 加载训练集和测试集 定义一个卷积神经网络 定义损失函数 在训练集上训练网络 在测试集上测试网络 36 4. 训练一个分类器 torch.nn.Linear PyTorch的nn.Linear()是用于设置网络中的全连接层的,需要注意的是全连接 计算安排成层,其中一些具有可学习的参数,它们将在学习过程中进行优化。 TensorFlow里,有类似Keras,TensorFlow-Slim和TFLearn这种封装了底层计算 图的高度抽象的接口,这使得构建网络十分方便。 在PyTorch中,包nn 完成了同样的功能。nn包中定义一组大致等价于层的模块。 一个模块接受输入的tesnor,计算输出的tensor,而且 还保存了一些内部状态比
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    智能芯片技术、机器学习 芯片 英国 2016年 D轮融资 估值17亿美元 15 NVIDIA(英伟达) 智能芯片技术 芯片 美国 1993年 上市 市值1450亿美元 16 Brainco 脑机接口 教育、医疗、智能硬件 美国 2015年 天使轮融资 融资额600万美元 17 Waymo 自动驾驶 交通 美国 2016年 C轮融资 估值1050亿美元 18 ABB Robotics 机器人及自动化技术 自然语言处理技术的技术层次 自然语言处理技术的发展历程 语音分析 词法分析 句法分析 语用分析 语义分析 20世纪70年代 • • 理性主义方法 基于统计的方法 20世纪50年代 • 图灵测试 • 经验主义方法 • 基于规则的方法 2008 • 深度学习 未来 深度学习入门-NLP(自然语言处理) 19 深度学习入门-NLP(自然语言处理) 1.短文本相似 2.文本分类 3 73 深度学习框架 Keras 74 深度学习框架-PyTorch https://pytorch.org/ 安装PyTorch 命令行运行: 75 深度学习框架-PyTorch 测试PyTorch import torch x = torch.rand(2, 3) print(x) 或者输入 conda list -f pytorch 76 4. 深度学习的开发流程
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    information. 1.4.4 PPL 评测 llama.cpp 为我们提供了评估 GGUF 模型 PPL 性能的方法。为了实现这一点,你需要准备一个数据集,比如 “wiki 测试”。这里我们展示了一个运行测试的例子。 第一步,下载数据集: wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1 .zip? �→ref=salesforce-research -O wikitext-2-raw-v1.zip unzip wikitext-2-raw-v1.zip 然后你可以用如下命令运行测试: ./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw 输出如下所示 perplexity : calculating 模型,或者是通过 AutoAWQ 训练得到 的与 vLLM 兼容的模型。实际上,其用法与 vLLM 的基本用法相同。我们提供了一个简单的示例,展示了如 何通过 vLLM 启动与 OpenAI API 兼容的接口,并使用 Qwen1.5-7B-Chat-AWQ 模型: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat-AWQ
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 35 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorch深度学习深度学习入门实战29MNIST测试Keras基于Python动手v2电子商务电子商务应用TensorFlow快速验证验证码识别机器课程温州大学01引言03AI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩