积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(50)机器学习(50)

语言

全部中文(简体)(49)英语(1)

格式

全部PDF文档 PDF(50)
 
本次搜索耗时 0.106 秒,为您找到相关结果约 50 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 MLP网络层

    全军出击:全连接层 主讲人:龙良曲 I know nothing Be practical nn.Linear relu? concisely ▪ inherit from nn.Module ▪ init layer in __init__ ▪ implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu()
    0 码力 | 13 页 | 992.88 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    网络架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.3 全连接层的参数开销 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.4 softmax运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1.1 隐藏层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.1.2 激活函数 提交Kaggle预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 深度学习计算 191 5.1 层和块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    模型计算引擎(Engine)  计算图框架(Graph) • 模型计算引擎Engine  模型结构处理  与PS通信交换模型参数  计算图的计算 • 计算图框架Graph  计算逻辑抽象op,通过op组合形成模型结构  提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径  运行阶段  计算图裁剪 模型训练框架 • 应用场景——离线预计算 流式模型的通路 • 持久化存储  本地disk存储,持久化对齐kafka的数据 • PS快速failover  Compaction机制,降低load数据量 • Online Learning对数据流的要求  不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息  数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架  双流拼接框架,通过组合方式支持多流拼接 双流拼接框架,通过组合方式支持多流拼接  基于Event Time的Window机制拼接方式  基于Low Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制  定义了流式数据的时钟,不可逆性  Smooth low watermark:异常数据时间跳变 流式拼接 • Checkpoint解决不重不丢问题  外存解决大数据量性能问题  在引擎中流转log
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 预览版202112 简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 深度学习特点 1.4 深度学习应用 1.5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . 17 3.2.3 所有的模型都可调用,就像网络层一样 . . . . . . . . . . . . . . . . . . . . 17 3.2.4 多输入多输出模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.5 共享网络层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.6 层「节点」的概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 目录 II 3.2.7 更多的例子 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.7.1 Inception 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.7.2 卷积层上的残差连接 . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.7.3 共享视觉模型 . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09深度学习-目标检测

    目标检测概述 10 1.目标检测概述 学术和工业界主要将目标检测算法分成三类: 1.传统的目标检测框架 2.基于深度学习的Two Stages目标检测框架 (准确度有优势) 3.基于深度学习的One Stage目标检测框架 (速度有优势) 11 1.目标检测概述 1.传统的目标检测框架 (1)候选区域选择(采用不同尺寸、比例的滑动窗口对图像进行遍历); (2)对不同的候选区域进行特征提取(SIFT、HOG等); (2)对不同的候选区域进行特征提取(SIFT、HOG等); (3)使用分类器进行分类(SVM、Adaboost等)。 12 1.目标检测概述 2.基于深度学习的Two Stages目标检测框架 (准确度有优势) 此类算法将检测问题分为两个阶段, 第一阶段生成大量可能含有目标的候选区域(Region Proposal),并附 加大概的位置信息; 第二个阶段对其进行分类,选出包含目标的候选区域并对其位置进行 修正(常使用R-CNN、Fast 修正(常使用R-CNN、Fast R-CNN、Faster R-CNN等算法)。 13 1.目标检测概述 3.基于深度学习的One Stage目标检测框架 (速度有优势) 此类检测算法属于端到端(End-to-End),不需要生成大量候选区域 的阶段,而是将问题转化为回归(Regression)问题处理,使用完整 图像作为输入,直接在图像的多个位置上回归出该位置的目标边框 及所属类别(
    0 码力 | 43 页 | 4.12 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    1,单元状态丢弃 2,新信息选择 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 循环神经网络(LSTM,GRU等)能学 中国。 地名 人名 地名 国家-总统 (美国,国家-总统,特朗普) 知识图谱关系抽取:基于深度学习 基于参数共享的方法 对于输入句子通过共用的 word embedding 层,然后接双向的 LSTM 层来对输入进行编码。然后分别使用一个 LSTM 来进行命名实体识别 (NER)和一个 CNN 来进行关系分类(RC)。 基于联合标注的方法 把原来涉及到序列标注任务和分类任务的关系抽取完全变成了一个序
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    SACC2017 深度学习 – 多层深度网络在学习什么 SACC2017 深度学习 – 解决问题的统一框架 1 SACC2017 深度学习 - 如何设计网络结构 AlexNet,8层,,I型 VGGNet,19层,I型 GoogleNet,22层,W型 ResNet,152层,V型 3x3, 64 3x3, 64 relu 直线型 (I型) 局部双分支型 (V型) 局部多分支型 扩增数据 – 各种图像增强,加噪声 • 非监督学习 - 聚类 • 迁移学习 – 利用相似任务训练好的网络 • 生成样本数据 – 深度生成对抗网络 SACC2017 深度学习 训练框架 和 硬件选择 不同场景,不同框架 特性 GTX - 1080TI G7-P40 PCIe-V100 GPU核心 GPU微架构 Pascal Pascal Volta 核心代号 GP104 GP102 • 运维工具化,快速屏蔽/启动异常机器 • 灵活的资源分配 • 支持以 GPU 或节点为粒度进行资源分配 • 用户配置任务所需最小资源 • 自动扩缩容,最大化资源使用率 • 支持不同计算框架 • 调度与任务松耦合,用户可以灵活定义任务 • 支持配置 docker 镜像,完全自定义运行环 境 • 良好的用户体验 • 完善的客户端工具 • 任务进度微信提醒 SACC2017
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 4 深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit RPC服务框架 LR/GBDT DNN/DeepFM/W&D DNN/DeepFM/W&D 负载均衡/统一版本管理/动态加载/批量化机制 特征映射 Embedding 数据处理 异构GPU集群 CNN 业务应用 模型服务 框架 排序模型服务 多媒体分析服务 自然语言分析服务 集群调度层 核心架构层 算法模型层 4 深度学习-分布式模型推理 • 推理性能优化 • 减少计算量: operator fusion/XLA/TVM/prune/float16/quantization
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 01. 初见PyTorch

    深度学习框架 主讲:龙良曲 Outline ▪ PyTorch的发展 ▪ PyTorch与同类框架 ▪ PyTorch功能演示 Torch ▪ 2002年 Torch ▪ 2011年 Torch7 ▪ Lua PyTorch ▪ 2016.10 发布0.1,THNN后端 ▪ 2018.12 发布1.0 , CAFFE2后端 ▪ 2019.5 发布1.1 ▪ Facebook Facebook AI Research 同类框架 https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750 大浪淘沙 王者之争 https://www.edureka.co/blog/pytorch-vs-tensorflow/ 动态图 https://towardsdatascience 易用性 兼容性 发展前景 0 小结 VS PyTorch生态 TorchVision PyTorch能做什么? • GPU加速 • 自动求导 • 常用网络层 1. GPU加速 2. 自动求导 3. 常用网络层 ▪ nn.Linear ▪ nn.Conv2d ▪ nn.LSTM ▪ nn.ReLU ▪ nn.Sigmoid ▪ nn.Softmax ▪ nn.CrossEntropyLoss
    0 码力 | 19 页 | 1.06 MB | 1 年前
    3
共 50 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
深度学习PyTorch入门实战27MLP网络网络层动手v2超大大规规模大规模超大规模美团应用建平深度学习Keras基于Python机器课程温州大学09目标检测Qcon北京2018文本智能处理技术陈运文国富图像审核微博在线实践黄波01初见
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩