积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(49)机器学习(49)

语言

全部中文(简体)(48)英语(1)

格式

全部PDF文档 PDF(49)
 
本次搜索耗时 0.085 秒,为您找到相关结果约 49 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 本书虽然免费开放电子版,供个人学习使用,但是未经许可,不能用于任何个人或者企 业的商业用途,违法盗版和销售,必究其法律责任。 龙龙老师 2021 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 MNIST测试

    0 码力 | 7 页 | 713.39 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 12 计算性能 503 12.1 编译器和解释器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 13.13.7 在 Kaggle 上对测试集进行分类并提交结果 . . . . . . . . . . . . . . . . . . . . . . . 640 13.14 实战Kaggle比赛:狗的品种识别(ImageNet Dogs) 14.6 训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 13.14.7 对测试集分类并在Kaggle提交结果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 14 自然语言处理:预训练 649 14.1 词嵌入(word2vec)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    (root node) 叶节点 (leaf node) 5 1.决策树原理 根节点 (root node) 非叶子节点 (non-leaf node) (代表测试条件,对数据属性的测试) 分支 (branches) (代表测试结果) 叶节点 (leaf node) (代表分类后所获得的分类标记) ⚫ 决策树算法是一种归纳分类算法 ,它通过对训练集的学习,挖掘 出有用的规则,用于对新数据进 熵越大,样 本纯度越低。。 ⚫ ID3 算法是以信息论为基础,以信息增益为衡量标准,从而实现对数据 的归纳分类。 ⚫ ID3 算法计算每个属性的信息增益,并选取具有最高增益的属性作为给 定的测试属性。 ID3 算法 10 2.ID3算法 ID3 算法 其大致步骤为: 1. 初始化特征集合和数据集合; 2. 计算数据集合信息熵和所有特征的条件熵,选择信息增益最大的特征作为当 前决策节点; 凹陷 硬滑 否 训练集 验证集 在已经生成的决策树上进行剪枝,从而 得到简化版的剪枝决策树。 后剪枝决策树通常比预剪枝决策树保留 了更多的分支。一般情况下,后剪枝的 欠拟合风险更小,泛化性能往往优于预 剪枝决策树。 24 C4.5的剪枝 后剪枝 基于表生成未剪枝的决策树 平坦 纹理 色泽 好瓜 坏瓜 根蒂 色泽 脐部 坏瓜 坏瓜 坏瓜 坏瓜 好瓜 好瓜 好瓜
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? . . . . . . . . . . . . . epochs=5, batch_size=32) 或者,你可以手动地将批次的数据提供给模型: model.train_on_batch(x_batch, y_batch) 只需一行代码就能评估模型性能: loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) 或者对新的数据生成预测: classes = model Keras? • 如何在多 GPU 上运行 Keras 模型? • “sample”, “batch”, “epoch” 分别是什么? • 如何保存 Keras 模型? • 为什么训练误差比测试误差高很多? • 如何获取中间层的输出? • 如何用 Keras 处理超过内存的数据集? • 在验证集的误差不再下降时,如何中断训练? • 验证集划分是如何计算的? • 在训练过程中数据是否会混洗?
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    2017年,在Ashish Vaswani et.al 的论文《Attention Is All You Need》 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Tra ✓ 在GPT-2阶段,OpenAI去掉了GPT-1阶段的有监督微调(fine-tuning),成为无监督模型。 ✓ 大模型GPT-2是一个1.5B参数的Transformer,在其相关论文中它在8个测试语言建模数据集中的7个数据集上实现了当时最先进的结果。 模型中,Transfomer堆叠至48层。GPT-2的数据集增加到8 million的网页、大小40GB的文本。 图:GPT-2通过调整 Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 • 微调模型在特定基准上的性能,即使名义上是人 类水平,也可能夸大基础任务的实际性能。 存在的问题03: 因为人类学习大多数语言任务不需要 大型受监督的数据集,当前NLP技术 在概念上具有一定的局限性。 存在的问题01: 从实用的角度来看,每一项新任务都需
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    机器学习的一般步骤 5 机器学习的一般步骤 数据搜集 数据清洗 特征工程 数据建模 6 机器学习的一般步骤 数据搜集 数据清洗 特征工程 数据建模 • 基于性能指标比较几种机 器学习模型 • 对最佳模型执行超参数调 整 • 在测试集上评估最佳模型 • 解释模型结果 • 得出结论 • 数据清理和格式化 • 探索性数据分析(EDA) • 特征工程 • 特征选择 • 网络下载 • 特征越好,模型越简单;特征越好 ,性能越出色;好特征即使使用一般的模型,也能得到很好的 效果! 3.特征工程 21 特征选择 主要方法 去除变化小的特征 去除共线特征 去除重复特征 主成分分析(PCA) …… 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更 强,减少过拟合 2.增强对特征和特征值之间的理解 3.特征工程 22 数据划分 训练集 测试集 数据集 验证集 训练集 测试集 验证集 时间序列 不考虑时间因素,通常打乱数据 3.特征工程 23 4.数据建模 01 机器学习项目流程概述 02 数据清洗 03 特征工程 04 数据建模 24 数据建模 • 基于性能指标比较几种机器学习模型 • 对最佳模型执行超参数调整 • 在测试集上评估最佳模型 • 解释模型结果 • 得出结论 25 参考文献
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    分为三种不同的版本分别是稳 定版本 (Stable Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 版本是基于用户反馈的改动版 本,可能有 API/SDK 函数改动,性能有进一步需要提升的空间; 原型版本是新功能还不可以,需要开发不能通过 pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能 1-1 中的矩形框,必须手动选择上“add Python3.6 to PATH”之后再点击【Install Now】默认安装完成即可。 3. 安装好 Python 语言包支持以后可以通过命令行来验证测试 安装是否成功,首先通过 cmd 打开 Window 命令行窗口,然 后输入 Python,显示如下: 图 1-2(验证 Python 命令行模式) 如果显示图 1-2 所示的信息表示已经安装成功
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    根据上述损失函数模型,我们可知,损失函数值越小,模型性能越好。给定一个数据集,我们将 训练数据集的平均损失称为经验风险。基于经验风险最小化原则,可构建全局损失函数求解最优 化问题: min ? 1 ? ෍ ?=1 ? L ??, ? ?? 机器学习的概念-损失函数 24 当样本数量足够大时,根据大数定理,经验风险会近似于模型的期望风险。此时,经验风险最 小化能确保有好的学习性能。然而,当样本数量不足时,单单利用经验风险最小化可能会导致 )代表对模型复杂度的惩罚。模型越复杂,?(?)越大,模型越简单,?(?)就越小。?是 一个正的常数,也叫正则化系数,用于平衡经验风险和模型复杂度。 一般来说,结构风险小的模型需要经验风险和模型复杂度同时小,因此对训练数据和测试数据 都能有较好的拟合。 机器学习的概念-损失函数 min ? 1 ? ෍ ?=1 ? ? ??, ? ?? 25 机器学习的概念-优化算法 算法指的是模型学习中的具体计算方法。一般来说,基于参数模型构建的统计 raining Error)和测试数据的 误差(Testing Error)作为模型评估的标准。 测试误差的具体定义为:????? = 1 ?′ ෍ ?=1 ?′ L ??, መ? ?? 其中,?′为测试数据数量,L(??, መ?(??))是损失函数,??代表真实标签, መ?(??)代表 预测标签。 一般来说,若我们模型学习的效果好,则训练误差和测试误差接近一致。 27 3.
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    document for more information. 1.4.4 PPL 评测 llama.cpp 为我们提供了评估 GGUF 模型 PPL 性能的方法。为了实现这一点,你需要准备一个数据集,比如 “wiki 测试”。这里我们展示了一个运行测试的例子。 第一步,下载数据集: wget https://s3.amazonaws.com/research.metamind.io/wikite .zip? �→ref=salesforce-research -O wikitext-2-raw-v1.zip unzip wikitext-2-raw-v1.zip 然后你可以用如下命令运行测试: ./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw 输出如下所示 perplexity : calculating 对于 requirements 中的 bitsandbytes 和 llama-cpp-python ,我建议您直接通过 pip 进行安装。但 是,暂时请不要使用 GGUF,因为其与 TGW 配合时的性能表现不佳。在完成所需包的安装之后,您需要 准备模型,将模型文件或目录放在 “./models“文件夹中。例如,您应按照以下方式将 “transformers“模型目录 Qwen1.5-7B-Chat
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 49 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
PyTorch深度学习深度学习入门实战29MNIST测试动手v2机器课程温州大学07决策决策树Keras基于Python12自然语言自然语言处理嵌入项目流程OpenVINO开发系列教程第一一篇第一篇01引言AI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩