机器学习课程-温州大学-09深度学习-目标检测2023年04月 深度学习-目标检测 黄海广 副教授 2 01 目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 本章目录 3 01 目标检测概述 1.目标检测概述 02 目标检测算法 03 YOLO算法 04 Faster RCNN算法 4 1.目标检测概述 分类(Classification) 类别的信息,用事先确定 好的类别(string)或实例ID 来描述图片。这一任务是 最简单、最基础的图像理 解任务,也是深度学习模 型最先取得突破和实现大 规模应用的任务。 检测(Detection) 分类任务关心整体,给出的 是整张图片的内容描述,而 检测则关注特定的物体目标 ,要求同时获得这一目标的 类别信息和位置信息。 分割(Segmentation) 分割包括语义分割(semantic segmentation)和实例分割( 分离开具有不同语义的图像部 分,而后者是检测任务的拓展 ,要求描述出目标的轮廓(相 比检测框更为精细)。 5 目标检测和识别 • 怎样检测和识别图 像中物体,如汽车、 牛等? 1.目标检测概述 6 目标识别的应用 1.目标检测概述 7 难点之一: 如何鲁棒识别? 1.目标检测概述 8 类内差异(intra-class variability) 1.目标检测概述 9 类间相似性(inter-class0 码力 | 43 页 | 4.12 MB | 1 年前3
《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品商品检测篇:使用 RetinaNet 瞄准你的货架商品 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 基础:目标检测问题定义与说明 • 基础:R-CNN系列二阶段模型综述 • 基础:YOLO系列一阶段模型概述 • 基础:RetinaNet 与 Facol Loss 带来了什么 • 应用:检测数据准备与标注 • 应用:划分检测训练集与测试集 • 应用:生成CSV 训练 RetinaNet • 应用:使用 RetinaNet 检测货架商品 • 扩展:目标检测常用数据集综述 • 扩展:目标检测更多应用场景介绍 目录 基础:目标检测问题定义与说明 目标检测问题 目标检测评估:Ground Truth 目标检测评估: Intersection over Union (IoU) 目标检测评估:Intersection over Union (IoU) Truth ??? = ???????????? ????? = Bounding Box Ground Truth 目标检测评估:准确率与召回率(以GT为中心) 目标检测评估:mean Average Precision(mAP) 基础:深度学习在目标检测的应用 目标检测近20年发展 Ref: Zou, Z., Shi, Z., Guo, Y. and Ye, J., 2019. Object0 码力 | 67 页 | 21.59 MB | 1 年前3
谭国富:深度学习在图像审核的应用或点击标签即可获取对应类别的图片。 l 图片场景识别技术 SACC2017 OCR识别 – 证件类 Ø 优图OCR识别技术支持数字识别和超过7000个常用汉字 的识别 Ø 在国际ICDAR 2015文本检测项目中刷新世界纪录 Ø 技术指标: 名片91.4%,驾驶证91.5%,行驶证85.5% Ø 应用场景:身份证、驾驶证、行驶证、营业执照、银行 卡、车牌、名片等等多个垂直场景 l 证件类OCR识别 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网 络波动引起的异常 • 监控任务运行状况,当任务发生异常时,选 择不同的重启策略 • 集群管理与监控 • 节点心跳异常告警 • 运维工具化,快速屏蔽/启动异常机器 • 灵活的资源分配 • 支持以 GPU 或节点为粒度进行资源分配 • 用户配置任务所需最小资源 • 自动扩缩容,最大化资源使用率 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测 监控场景人体属性 人群密度估计 监控场景人体检测 女性 青年 长发 背面 背包 灰色衣服 青色裤子 实际: 106人 预测: 113.4人 • 结合视频监控场景, 在图像序列中, 识别图 像物体,0 码力 | 32 页 | 5.17 MB | 1 年前3
机器学习课程-温州大学-机器学习项目流程的数据清理一般是由计算机而不是人工完成。 9 2.数据清洗 不合法值 空 值 异常检测 重复处理 拼写错误 命名习惯 数理统计技术 数据挖掘技术 脏数据 数据清理策略、规则 满足数据质量要求的数据 数据清理原理 10 探索性数据分析(EDA) 探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算 统计数据,以便探索我们的数据。 •目的是找到异常,模式,趋势或关系。 这些可能是有趣的(例如,0 码力 | 26 页 | 1.53 MB | 1 年前3
Keras: 基于 Python 的深度学习库howpublished={\url{https://github.com/keras-team/keras}}, } 3.3.3 如何在 GPU 上运行 Keras? 如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。 如果你以 Theano 后端运行,则可以使用以下方法之一: 方法 1: 使用 Theano flags。 快速开始 27 THEANO_FLAGS=device=gpu __**kwargs__: 当使用 Theano/CNTK 后端时,这些参数被传入 K.function。当使用 Tensor- Flow 后端时,这些参数被传递到 tf.Session.run。 异常 • ValueError: 如果 optimizer, loss, metrics 或 sample_weight_mode 这些参数不合法。 例 model = Sequential() 时才有用。停止前要验证的总步数(批 次样本)。 返回 一个 History 对象。其 History.history 属性是连续 epoch 训练损失和评估值,以及验证 集损失和评估值的记录(如果适用) 。 异常 • RuntimeError: 如果模型从未编译。 • ValueError: 在提供的输入数据与模型期望的不匹配的情况下。 4.2.3.3 evaluate evaluate(self,0 码力 | 257 页 | 1.19 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 • Checkpoint 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 运行 迭代 规模 深度 1 平台背景 算法/模型 计算 数据/特征 存储 基础/IDE 业务 调度 集群 2 平台架构 计算 机器学习平台 Feed排序 推荐流 文本分类/检测 Hadoop/Spark 集群 数据仓库集群 高性能GPU集群 Hdfs/Odps TensorFlow /Caffe 图像/视频分类 阿里云计算集群 实时计算集群 业务 Storm/Flink0 码力 | 36 页 | 16.69 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.2.3 图像中目标的边缘检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.2.4 学习卷积核 . . . . . . . . 热狗识别 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 13.3 目标检测和边界框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 13.3.1 边界框 571 13.4.4 使用非极大值抑制预测边界框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 13.5 多尺度目标检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 13.5.1 多尺度锚框0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-10机器学习-聚类1.无监督学习方法概述 主要算法 K-means、密度聚类、层次聚类 聚类 主要应用 市场细分、文档聚类、图像分割、图像压缩、聚类分析、特征学习或者词 典学习、确定犯罪易发地区、保险欺诈检测、公共交通数据分析、IT资产 集群、客户细分、识别癌症数据、搜索引擎应用、医疗应用、药物活性预 测…… 7 1.无监督学习方法概述 聚类案例 1.医疗 医生可以使用聚类算法来发现疾病。以甲状 如果有两个高度重叠的数据,那么它就 不能被区分,也不能判断有两个簇; • 欧几里德距离可以不平等的权重因素, 限制了能处理的数据变量的类型; • 有时随机选择质心并不能带来理想的结 果; • 无法处理异常值和噪声数据; • 不适用于非线性数据集; • 对特征尺度敏感; • 如果遇到非常大的数据集,那么 计算机可能会崩溃。 27 3.密度聚类和层次聚类 01 无监督学习概述 020 码力 | 48 页 | 2.59 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112网络和深度学习可认为是相同的。 现在简单来比较一下深度学习算法与其它算法的特点。如图 1.3 所示。基于规则的系 统一般会编写显式的检测逻辑,这些逻辑通常是针对特定的任务设计的,并不适合其他任 务。传统的机器学习算法一般会人为设计具有一定通用性的特征检测方法,如 SIFT、HOG 特征,这些特征能够适合某一类的任务,具有一定的通用性,但是如何设计特征,以及特 征方法的优劣性非常的关键,同时也 部分工作可以让机器自动完成学习,不需要人类干预。但是浅层的神经网络的特征提取能 力较为有限,而深层的神经网络擅长提取高层、抽象的特征,因此具有更好的性能表现。 针对特定任务 的检测逻辑 输出逻辑 人为设计的 特征检测方法 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 网络 输出子网络 基于规则的系统 传统机器学习 浅层神经网络 一直是人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标检测、语义分割、图像变换等方向,几乎都是基于深度学习端到端地训 练,获得的模型性能好,适应性强;在 Atria 游戏平台上,DeepMind 设计的 DQN 算法模 型可以在相同的算法、模型结构和超参数的设定下,在0 码力 | 439 页 | 29.91 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017 convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block Forward Block Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single0 码力 | 26 页 | 3.69 MB | 1 年前3
共 33 条
- 1
- 2
- 3
- 4













