积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(33)机器学习(33)

语言

全部中文(简体)(32)英语(1)

格式

全部PDF文档 PDF(33)
 
本次搜索耗时 0.073 秒,为您找到相关结果约 33 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 开发环境安装

    开发环境准备 主讲人:龙良曲 开发环境 ▪ Python 3.7 + Anaconda 5.3.1 ▪ CUDA 10.0 ▪ Pycharm Community ANACONDA CUDA 10.0 ▪ NVIDIA显卡 CUDA 安装确认 路径添加到PATH CUDA 测试 PyTorch安装 管理员身份运行cmd PyCharm ▪ 配置Interpreter
    0 码力 | 14 页 | 729.50 KB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    PyTorch + OpenVINO 开发实战系列教程 第一篇 系列文章 OpenVINO TM 工具套件 目录 目录 概述 ��������������������������������������������������������������������������������������������������������������������������������� Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 框架的深度学习破冰之旅。 PyTorch + OpenVINO 开发实战系列教程 第一篇 2 1. Pytorch 介绍与基础知识 1.1 Pytorch 介绍 Pytorch 是开放源代码的机器学习框架,目的是加速从研究 原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 预览版202112 简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 深度学习特点 1.4 深度学习应用 1.5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 的。 怎么实现人工智能是一个非常广袤的问题。人工智能的发展主要经历了三个阶段,每 个阶段都代表了人们从不同的角度尝试实现人工智能的探索足迹。早期,人们试图通过总 结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 为什么选择 Keras? 5 2.1 Keras 优先考虑开发人员的经验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Keras 被工业界和学术界广泛采用 . . . . . 35 3.3.19 Keras 配置文件保存在哪里? . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . . . . . . . . . . . . . . . . 36 3.3.21 如何在 Keras 中安装 HDF5 或 h5py 来保存我的模型? . . . . 3 可用的惩罚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 16.4 开发新的正则化器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 目录 X 17 约束 Constraints
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 总的来说,人工智能经历了逻辑推理、知识工程、机器 学习三个阶段。 机器学习伴随着人工智能的发展而诞生,它是人工智能 发展到一定阶段的必然产物。 12 机器学习发展史 13 机器学习发展史 14 2. 机器学习的类型 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 15 2. 机器学习的类型 16 ✓ 分类(Classification) 一般来说,若我们模型学习的效果好,则训练误差和测试误差接近一致。 27 3. 机器学习的背景知识 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 28 3. 机器学习的背景知识-希腊字母 大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 Β β beta beta 贝塔 Γ γ gamma gamma
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    识别率超过99% 和95% 1970 受限于 计算能 力,进 入第一 个寒冬 XCON专 家系统出 现,每年 节约4000 万美元 第1阶段:人工智能起步 期 (1956-1980s) 第2阶段:专家系统推 广 (1980s-1990s) 第3阶段:深度学习 (2000s-至今 ) 1997 IBM的 Deep Blue战 胜国际 象棋冠 军 2011 苹果的 Siri问世, 技术上不 xx-randroid-sdk.java xx-ios-arm-sdk.m xx-x86-sdk.cpp Rapidnet : 深度网络应用的解决方案 • 将深度网络SDK生成,分为解析,编译,运行三个阶段 • 一键生成深度学习SDK,一个模型到处应用 加快应用速度 - RapidNet Ncnn : 移动端前向网络开源框 https://github.com/tencent/ncnn • 针对移动端优化版本 • 在部署了DeepEye视频直播鉴黄解决方案后,系 统对直播房间的视频流按指定的时间间隔(用户 可配置)进行截图,通过鉴黄引擎给该图片进行 鉴别,并将可疑图片和对应的房间信息回调给开 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测 监控场景人体属性
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . 767 Bibliography 769 xv xvi 前言 几年前,在大公司和初创公司中,并没有大量的深度学习科学家开发智能产品和服务。我们中年轻人(作者) 进入这个领域时,机器学习并没有在报纸上获得头条新闻。我们的父母根本不知道什么是机器学习,更不用 说为什么我们可能更喜欢机器学习,而不是从事医学或法律职业。机器学习是一门具有前瞻性的学科,在现 业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 时至今日,人们常用的计算机程序几乎都是软件开发人员从零编写的。比如,现在开发人员要编写一个程序 来管理网上商城。经过思考,开发人员可能提出如下一个解决方案:首先,用户通过Web浏览器(或移动应 用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个 用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。 为了完善业务逻辑,开发人员必须细致
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05深度学习-深度学习实践

    偏差和方差 本章目录 3 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev Set ),用来做 模型选择(model selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元) 在训练阶段使用,在测试阶段不使用! Dropout正则化 13 正则化 Early stopping代表提早停止训练神经网络 Early stopping的优点是,只运行 一次梯度下降,你可以找出?的较小
    0 码力 | 19 页 | 1.09 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    03 正则化、偏差和方差 4 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev Set ),用来做 模型选择(model selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元) 在训练阶段使用,在测试阶段不使用! Dropout正则化 26 正则化 Early stopping代表提早停止训练神经网络 Early stopping的优点是,只运行 一次梯度下降,你可以找出?的较小
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 QCon2018北京-基于深度学习的视频结构化实践-姚唐仁

    AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 • 国内领先的云计算厂商 关于七牛云 智能多媒体服务 �� �� �� ������ ������ ����� ���� ���� ������ ���� ���� ���� ���� ���� 视频结构化视图 视频的时序关联性 视频的阶段性
    0 码力 | 39 页 | 38.01 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
深度学习PyTorch入门实战02开发环境安装OpenVINO系列教程第一一篇第一篇深度学习Keras基于Python机器课程温州大学01引言国富图像审核应用动手v205实践QCon2018北京视频结构结构化姚唐仁
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩