动手学深度学习 v2.0运算符 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1.3 广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 10 注意力机制 381 10.1 注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 12.4.3 存储器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 12.4.4 CPU0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112工智能算法。接下来我们将介绍人工智能、机器学习、深度学习的概念以及它们之间的联 系与区别。 1.1.1 人工智能 人工智能是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出 现在 1956 年召开的达特茅斯会议上。这是一项极具挑战性的任务,人类目前尚无法对人脑 的工作机制有全面、科学的认知,希望能制造达到人脑水平的智能机器无疑是难于上青 天。即使如此,在某个方面呈现出类似、接近甚至超越人类智能水平的机器被证明是可行 些具体任务场景强相 关的,一旦场景发生了变动,这些依靠人工设计的特征和先验设定无法自适应新场景,因 此需要重新设计算法模型,模型的通用性不强。 设计一种像人脑一样可以自动学习、自我调整的通用智能机制一直是人类的共同愿 景。从目前来看,深度学习是最接近通用智能的算法之一。在计算机视觉领域,过去需要 针对具体的任务设计特征、添加先验假设的做法,已经被深度学习算法彻底抛弃了,目前 在图片识别、目标 是一种典型的生物神经元结构。1943 年,心理学家沃伦·麦卡洛克 (Warren McCulloch)和数理逻辑学家沃尔特·皮茨(Walter Pitts)通过对生物神经元的研究, 提出了模拟生物神经元机制的人工神经网络的数学模型 [1],这一成果被美国神经学家弗 兰克·罗森布拉特(Frank Rosenblatt)进一步发展成感知机(Perceptron)模型 [2],这也是现代 深度学习的基石。0 码力 | 439 页 | 29.91 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待 • Kafka 堆积监控,实时报警 • 如何解决内存问题 • 调整内存参数 • 关闭多余的监控点 • 如何异常处理 • 自动化监控与修复系统 率 • 在线版本切换:基于ZK的版本感知机制,动态进行版本切换,实现BASE模型的热更新,实时训练与离线训练周期模型融合 • 模型结构训练与推理兼容:在线PS与离线PS模型结构兼容,自动模型参数转换 • 稳定性优化 • 模型快照:基于ps-scheduler的周期模型版本探测与保存,模型稀疏化分片存储 • 冷备容灾:基于checkpoint机制(Local模式&Remote模式),实现参 ,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 3 在线机器学习-参数服务器 模型验证 离线训练0 码力 | 36 页 | 16.69 MB | 1 年前3
超大规模深度学习在美团的应用-余建平模型召回,ANN检索 粗排模型,降低线上计算量 • 分布式Sharding 模型分片存储,支持超大规模模型 数据并行计算,加速Optimizer计算 • 低频特征过滤 Counting Bloom Filter 概率方式 • 模型数据通路 Base + Delta方式 增量提供ACK机制,确保模型正确性 Parameter Server • 模型数据的统一管理 Ps分布式分片的均衡,避免分片大小不一致 NN网络矩阵按行切分,解决请求包不均衡问题 特征按照Hash方式分布式存储 • 模型并行调超参 grid search random search PS的多模型训练 • 提高内存使用效率 model group内共享特征key的存储 • 超大规模模型 -> 高扇出的分布式PS • 长尾效应:单个分片的抖动(网络、CPU)对请求影响变大 1 reply 2 reply N … 超过t Backup Request Cancel Request 流式模型的通路 • 持久化存储 本地disk存储,持久化对齐kafka的数据 • PS快速failover Compaction机制,降低load数据量 • Online Learning对数据流的要求 不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息0 码力 | 41 页 | 5.96 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言分析、理解、生 成等的操作和加工。自然语言处理的具体表现形式包括机器 翻译 、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识 别等。 可以说,自然语言处理就是要计算机理解自然语言,自然 语言处理机制涉及 两个流程,包括自然语言理解和自然语言生成 ,自然语言理解是让计算机把 输入的语言变成有意思的符号和关 系,然后根据目的再处理;自然语言生成 则是把计算机数据转 化为自然语言。实现人机间的信息交流,是人工智能 Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 56 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass0 码力 | 80 页 | 5.38 MB | 1 年前3
Keras: 基于 Python 的深度学习库实现这个目标的一种方法是建立一个模型,将两条推文编码成两个向量,连接向量,然后 添加逻辑回归层;这将输出两条推文来自同一作者的概率。模型将接收一对对正负表示的推特 数据。 由于这个问题是对称的,编码第一条推文的机制应该被完全重用来编码第二条推文。这里 我们使用一个共享的 LSTM 层来编码推文。 让我们使用函数式 API 来构建它。首先我们将一条推特转换为一个尺寸为 (140, 256) 的 矩阵,即每条推特 by_name=True) 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model # 假设你的模型包含一个 AttentionLayer 类的实例 model = load_model('my_model custom_objects={'AttentionLayer': AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测 试时是关闭的。 此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后0 码力 | 257 页 | 1.19 MB | 1 年前3
全连接神经网络实战. pytorch 版型训练很有好处。pytorch 中有两个 模块是用来导入数据的:torch.utils.data.Dataset 以及 torch.utils.data.DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 . u t i l s . data import Dataset from torch . u t i l s . data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开 optimizer ’ ] ) test_loop ( test_dataloader , model2 , loss_function ) model2 的预测正确率为 70.5%,证明我们的模型保存和恢复机制是正确的。 本节代码见 chapter3.py。 3.2 初始化网络权重-方法一 我们通过自定义初始化函数,来实现对网络参数的初始化。有时候,好的初始化可以为网络 的训练带来极大好处。 在0 码力 | 29 页 | 1.40 MB | 1 年前3
机器学习课程-温州大学-03深度学习-PyTorch入门dtype # torch.float32 查看Tensor维度和形状 tensor1.shape #查看形状或尺寸 tensor1.ndim #查看维度 查看Tensor是否存储在GPU上 tensor1.is_cuda 查看Tensor的梯度 tensor1.grad 1.Tensors张量的概念 7 Tensor在CPU和GPU之间转换,以及numpy之间的转换 Autograd自动求导 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 17 PyTorch 1.x的自动微分机制 构 建 计 算 图 创 建 设 置 张 量 (tensor) 设 置 t e n s o r的 requires_ g r a d 的 属 性 为 True 定 义 函 数 ( L)0 码力 | 40 页 | 1.64 MB | 1 年前3
机器学习课程-温州大学-13深度学习-Transformer列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1 速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻 身主流模型架构基础。(RNN缺陷正在于流水线式的0 码力 | 60 页 | 3.51 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3 中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transform0 码力 | 44 页 | 2.36 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













