积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部中文(简体)(10)英语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.048 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 目录 VIII 11 回调函数 Callbacks 146 11.1 回调函数使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.1.13 LambdaCallback [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11.2 创建一个回调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.1 例: 记录损失历史 evaluation_data 或 evaluation_split 时,评估将在 每个 epoch 结束时运行。 • 在 Keras 中,可以添加专门的用于在 epoch 结束时运行的 callbacks 回调。例如学习率变化 和模型检查点(保存)。 3.3.6 如何保存 Keras 模型? 3.3.6.1 保存/加载整个模型(结构 + 权重 + 优化器状态) 不建议使用 pickle 或 cPickle
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    多语言、国际化  多种证件版式  准确率领先同类产品  集成方便 标准化: Standard Solutions 智能推荐解决方案: 推荐请求 PAI-Studio–建模平台 召 回 模 型 EasyRec GraphLearn Alink 排 序 模 型 模型训练评估 PAI-EAS – 模型推理 model1 model2 … PAI-ABTest A/B流量划分 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Pipeline2 标准化: Standard Solutions 标准化: Standard Solutions 智能推荐解决方案 > 实时推荐方案
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    后要求用它做一些数据科学研究,却没有对结果有要求。这类数据中不含有“目标”的机器学习问题通常被 为无监督学习(unsupervised learning),本书后面的章节将讨论无监督学习技术。那么无监督学习可以回 答什么样的问题呢?来看看下面的例子。 • 聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们 能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗 程,包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。为了更容易学习,我们将从经 典算法————线性神经网络开始,介绍神经网络的基础知识。经典统计学习技术中的线性回归和softmax回 归可以视为线性神经网络,这些知识将为本书其他部分中更复杂的技术奠定基础。 3.1 线性回归 回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领 是预 测数据属于一组类别中的哪一个。 85 3.1.1 线性回归的基本元素 线性回归(linear regression)可以追溯到19世纪初,它在回归的各种标准工具中最简单而且最流行。线性回 归基于几个简单的假设:首先,假设自变量x和因变量y之间的关系是线性的,即y可以表示为x中元素的加权 和,这里通常允许包含观测值的一些噪声;其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    神经网络的典型训练过程如下: 1. 定义包含一些可学习的参数(或者叫权重)神经网络模型; 2. 在数据集上迭代; 3. 通过神经网络处理输入; 4. 计算损失(输出结果和正确值的差值大小); 5. 将梯度反向传播回网络的参数; 6. 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 原文链接:pytorch 入门笔记 -03-
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    若未找到完备匹配则修改可行标杆 (4) 重复(2)(3)直到找到相等子图的完备匹配 供需平衡 13 5.1 配送时长预估模型 • 基于现有状况、订单增速、消 化速度、天气、当前手段等多 维特征,使用XGBoost模型回 归预测未来五分钟进单的平均 配送时长 • 分商圈、分时段、多模型的精 细化预估 • 分布式、多线程、并行计算最 佳分割点,满足海量数据的实 时性要求 • 在供需失衡之前,即实施调控 手段 5
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    融合点击模型和 互动模型 单目标 LR、W&D、 FM和DeepFM 等模型排序 排序损失 针对信息流业务场景,从 点击损失升级到排序损 失,基础模型为 DeepFM,排序损失为 BPR 召 回 排 序 • 深度学习模型训练:WeiLearn 样本库 WeiLearn-深度学习模型训练 CTR样本 自然语言样本 视频与图像样本 样本处理 CTR NLP 图片视频 VGG Yolo
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    视频鉴黄解决方案 • 在部署了DeepEye视频直播鉴黄解决方案后,系 统对直播房间的视频流按指定的时间间隔(用户 可配置)进行截图,通过鉴黄引擎给该图片进行 鉴别,并将可疑图片和对应的房间信息回调给开 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    神经网络的典型训练过程如下: • 定义神经网络模型,它有一些可学习的参数(或者权重); • 在数据集上迭代; • 通过神经网络处理输入; • 计算损失(输出结果和正确值的差距大小) • 将梯度反向传播回网络的参数; • 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 31 定义 网络 1 损失 函数 2 优化
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07机器学习-决策树

    率克服信息增益的缺点,偏向于特征值小的特征,CART 使用基尼指数克服 C4.5 需要求 log 的巨大计算量,偏向于特征值较多的特征。 • 使用场景的差异:ID3 和 C4.5 都只能用于分类问题,CART 可以用于分类和回 归问题;ID3 和 C4.5 是多叉树,速度较慢,CART 是二叉树,计算速度很快; • 样本数据的差异:ID3 只能处理离散数据且缺失值敏感,C4.5 和 CART 可以处 理连续性数据且有多种
    0 码力 | 39 页 | 1.84 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import Dataset from torch . u t i l s . data import DataLoader
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
Keras基于Python深度学习阿里云上建模实践程孟力动手v2pytorch入门笔记03神经网络神经网神经网络经典算法人工智能人工智能外卖物流调度应用微博在线机器黄波国富图像审核课程温州大学PyTorch07决策决策树连接实战
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩