Keras: 基于 Python 的深度学习库
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 目录 VIII 11 回调函数 Callbacks 146 11.1 回调函数使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 11.1.13 LambdaCallback [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 11.2 创建一个回调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.2.1 例: 记录损失历史 evaluation_data 或 evaluation_split 时,评估将在 每个 epoch 结束时运行。 • 在 Keras 中,可以添加专门的用于在 epoch 结束时运行的 callbacks 回调。例如学习率变化 和模型检查点(保存)。 3.3.6 如何保存 Keras 模型? 3.3.6.1 保存/加载整个模型(结构 + 权重 + 优化器状态) 不建议使用 pickle 或 cPickle0 码力 | 257 页 | 1.19 MB | 1 年前3阿里云上深度学习建模实践-程孟力
多语言、国际化 多种证件版式 准确率领先同类产品 集成方便 标准化: Standard Solutions 智能推荐解决方案: 推荐请求 PAI-Studio–建模平台 召 回 模 型 EasyRec GraphLearn Alink 排 序 模 型 模型训练评估 PAI-EAS – 模型推理 model1 model2 … PAI-ABTest A/B流量划分 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Pipeline2 标准化: Standard Solutions 标准化: Standard Solutions 智能推荐解决方案 > 实时推荐方案0 码力 | 40 页 | 8.51 MB | 1 年前3动手学深度学习 v2.0
后要求用它做一些数据科学研究,却没有对结果有要求。这类数据中不含有“目标”的机器学习问题通常被 为无监督学习(unsupervised learning),本书后面的章节将讨论无监督学习技术。那么无监督学习可以回 答什么样的问题呢?来看看下面的例子。 • 聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们 能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗 程,包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。为了更容易学习,我们将从经 典算法————线性神经网络开始,介绍神经网络的基础知识。经典统计学习技术中的线性回归和softmax回 归可以视为线性神经网络,这些知识将为本书其他部分中更复杂的技术奠定基础。 3.1 线性回归 回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领 是预 测数据属于一组类别中的哪一个。 85 3.1.1 线性回归的基本元素 线性回归(linear regression)可以追溯到19世纪初,它在回归的各种标准工具中最简单而且最流行。线性回 归基于几个简单的假设:首先,假设自变量x和因变量y之间的关系是线性的,即y可以表示为x中元素的加权 和,这里通常允许包含观测值的一些噪声;其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。0 码力 | 797 页 | 29.45 MB | 1 年前3pytorch 入门笔记-03- 神经网络
神经网络的典型训练过程如下: 1. 定义包含一些可学习的参数(或者叫权重)神经网络模型; 2. 在数据集上迭代; 3. 通过神经网络处理输入; 4. 计算损失(输出结果和正确值的差值大小); 5. 将梯度反向传播回网络的参数; 6. 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 原文链接:pytorch 入门笔记 -03-0 码力 | 7 页 | 370.53 KB | 1 年前3经典算法与人工智能在外卖物流调度中的应用
若未找到完备匹配则修改可行标杆 (4) 重复(2)(3)直到找到相等子图的完备匹配 供需平衡 13 5.1 配送时长预估模型 • 基于现有状况、订单增速、消 化速度、天气、当前手段等多 维特征,使用XGBoost模型回 归预测未来五分钟进单的平均 配送时长 • 分商圈、分时段、多模型的精 细化预估 • 分布式、多线程、并行计算最 佳分割点,满足海量数据的实 时性要求 • 在供需失衡之前,即实施调控 手段 50 码力 | 28 页 | 6.86 MB | 1 年前3微博在线机器学习和深度学习实践-黄波
融合点击模型和 互动模型 单目标 LR、W&D、 FM和DeepFM 等模型排序 排序损失 针对信息流业务场景,从 点击损失升级到排序损 失,基础模型为 DeepFM,排序损失为 BPR 召 回 排 序 • 深度学习模型训练:WeiLearn 样本库 WeiLearn-深度学习模型训练 CTR样本 自然语言样本 视频与图像样本 样本处理 CTR NLP 图片视频 VGG Yolo0 码力 | 36 页 | 16.69 MB | 1 年前3谭国富:深度学习在图像审核的应用
视频鉴黄解决方案 • 在部署了DeepEye视频直播鉴黄解决方案后,系 统对直播房间的视频流按指定的时间间隔(用户 可配置)进行截图,通过鉴黄引擎给该图片进行 鉴别,并将可疑图片和对应的房间信息回调给开 发者,开发者可以根据返回的结果信息优先给审 核人员进行审核,进行封停等进一步处理。经过 审核没有问题的内容再呈现倒观看者的屏幕。 SACC2017 从静到动:结合视频识别能力 多物体检测0 码力 | 32 页 | 5.17 MB | 1 年前3机器学习课程-温州大学-03深度学习-PyTorch入门
神经网络的典型训练过程如下: • 定义神经网络模型,它有一些可学习的参数(或者权重); • 在数据集上迭代; • 通过神经网络处理输入; • 计算损失(输出结果和正确值的差距大小) • 将梯度反向传播回网络的参数; • 更新网络的参数,主要使用如下简单的更新原则: weight = weight - learning_rate * gradient 31 定义 网络 1 损失 函数 2 优化0 码力 | 40 页 | 1.64 MB | 1 年前3机器学习课程-温州大学-07机器学习-决策树
率克服信息增益的缺点,偏向于特征值小的特征,CART 使用基尼指数克服 C4.5 需要求 log 的巨大计算量,偏向于特征值较多的特征。 • 使用场景的差异:ID3 和 C4.5 都只能用于分类问题,CART 可以用于分类和回 归问题;ID3 和 C4.5 是多叉树,速度较慢,CART 是二叉树,计算速度很快; • 样本数据的差异:ID3 只能处理离散数据且缺失值敏感,C4.5 和 CART 可以处 理连续性数据且有多种0 码力 | 39 页 | 1.84 MB | 1 年前3全连接神经网络实战. pytorch 版
假设我们现在已经产生了 x_data,y_data 以及 x_data2,y_data2,我们要把它们进行封装。 我们只需要继承 Dataset,然后实现三个函数即可,即初始化函数,求长度的函数以及根据索引返 回某一个样本的函数: from torch . u t i l s . data import Dataset from torch . u t i l s . data import DataLoader0 码力 | 29 页 | 1.40 MB | 1 年前3
共 11 条
- 1
- 2