阿里云上深度学习建模实践-程孟力
阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景 OCR识别 人脸核身 智能风控 自动驾驶 语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难0 码力 | 40 页 | 8.51 MB | 1 年前3《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别
https://github.com/lepture/captcha flask flask 是一个基于 Werkzeug 和 jinja2 开发的 Python Web 应用程序框架,遵从 BSD 开源协 议。它以一种简约的方式实现了框架核心,又保留了扩展性。 https://github.com/pallets/flask 生成验证码数据集 验证码(CAPTCHA)简介 全自动区分计算机和 一种常用的CAPTCHA测试是让用户输入一个扭曲变形的图片上所显示的文字或数字,扭 曲变形是为了避免被光学字符识别(OCR, Optical Character Recognition)之类的计算机程 序自动识别出图片上的文数字而失去效果。由于这个测试是由计算机来考人类,而不是 标准图灵测试中那样由人类来考计算机,人们有时称CAPTCHA是一种反向图灵测试。 https://zh.wikipedia PTCHA。准确 率大概是15%,但是攻击者可以每天尝试10万次,相对来说成本很低。而在2008年, Google的CAPTCHA也被俄罗斯黑客所破解。攻击者使用两台不同的计算机来调整破解进 程,可能是用第二台计算机学习第一台对CAPTCHA的破解,或者是对成效进行监视。 https://zh.wikipedia.org/wiki/captcha 验证码(CAPTCHA)演进 https://zh0 码力 | 51 页 | 2.73 MB | 1 年前3动手学深度学习 v2.0
着用一台计算机和一个代码编辑器编写代码,如 图1.1.1中所示。问题看似很难解决:麦克风每秒钟将收集大 约44000个样本,每个样本都是声波振幅的测量值。而该测量值与唤醒词难以直接关联。那又该如何编写程 序,令其输入麦克风采集到的原始音频片段,输出{是, 否}(表示该片段是否包含唤醒词)的可靠预测呢?我 们对编写这个程序毫无头绪,这就是需要机器学习的原因。 图1.1.1: 识别唤醒词 通常, identically distributed, i.i.d.)。样本有时也叫做数据点 (data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates)) 的属性组成。机器学习模型会根据这些属性进行预测。在上面的监督学习问题中,要预测的是一个特殊的属 性,它被称为标签(label,或目标(target))。 当处理图 https://discuss.d2l.ai/t/1765 84 2. 预备知识 3 线性神经网络 在介绍深度神经网络之前,我们需要了解神经网络训练的基础知识。本章我们将介绍神经网络的整个训练过 程,包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。为了更容易学习,我们将从经 典算法————线性神经网络开始,介绍神经网络的基础知识。经典统计学习技术中的线性回归和softmax回0 码力 | 797 页 | 29.45 MB | 1 年前3机器学习课程-温州大学-01机器学习-引言
机器学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量0 码力 | 78 页 | 3.69 MB | 1 年前3机器学习课程-温州大学-01深度学习-引言
深度学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 是微积分中的重要基础概念。当函数? = ?(?) 的自变量?在一点?0上产生一个增量??时,函 数输出值的增量0 码力 | 80 页 | 5.38 MB | 1 年前3从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱
� ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 业界⽅案:Double Hashing 腾讯,阿⾥,头条也都⽀持了Double Hashing 场景 内存节省 场景1 88% 场景2 64% 下⼀步的 解空间 未来⽅向—现有推荐架构的问题,算法⼯程协同的解法 � 更基础的复杂模型,场景的快速适应 � 多场景建模 � 端云⼀体的协同 推荐技术 [KDD2020] DCAF: A Dynamic Computation Allocation0 码力 | 22 页 | 6.76 MB | 1 年前3深度学习在电子商务中的应用
SPEAKER / 程进兴 2017年4月 2 3 苏宁国际美国硅谷研究院 苏宁美国硅谷研究院创 建于2013年11月,其宗旨是建立 高科技人才和专利的蓄水池,推 动苏宁持续地创新和转型,为用 户提供简约完美的用户体验。 硅谷研究院由来自云计 算、大数据、人工智能及深度学 习等不同专业背景的工程师、数 据科学家及分析师组成。目前包 含人工智能、大数据和创新三个 实验室。 4 程进兴,苏宁美国研究院技术总监,斯坦福大学0 码力 | 27 页 | 1.98 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
强化学习算法有 DQN、A3C、A2C、PPO 等。在围棋领域,DeepMind AlaphGo 程序已经 超越多名人类围棋专家;在 Dota2 和星际争霸游戏上,OpenAI 和 DeepMind 开发的智能程 序也在限制规则下战胜了顶级职业队伍。 机器人(Robotics) 在真实环境中,机器人的控制也取得了一定的进展。如 UC Berkeley 实验室在机器人领域的 Imitation Learning、Meta 语言的编程方式非常 接近,代码简单易读。 这种运算时同时创建计算图? = ? + ?和数值结果6.0 = 2.0 + 4.0的方式叫做命令式编 预览版202112 1.5 深度学习框架 15 程,也称为动态图模式。PyTorch 是采用动态图模式的深度学习框架,开发效率高,调试 方便,所见即所得。一般认为,动态图模式开发效率高,但是运行效率可能不如静态图模 式,更适合算法设计和开发;静态图模 些数据,还需要借助于浏览器和 Web 后端。首先是打开 Web 后端,通过在 cmd 终端运行 tensorboard --logdir path 指定 Web 后端监控的文件目录 path,即可打开 Web 后端监控进 程,如图 8.2 所示: 图 8.2 启动 Web 服务器 此时打开浏览器,并输入网址 http://localhost:6006 (也可以通过 IP 地址远程访问,具体 端口号可能会变动,可查看命令提示)0 码力 | 439 页 | 29.91 MB | 1 年前3《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品
and Ye, J., 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055. 目标检测近20年里程碑 Ref: Zou, Z., Shi, Z., Guo, Y. and Ye, J., 2019. Object detection in 20 years: A survey. arXiv preprint0 码力 | 67 页 | 21.59 MB | 1 年前3机器学习课程-温州大学-06深度学习-优化算法
让每个特征都有均值为0,方差为1的分布 Batch Normalization是2015年一篇论文中提出的数据归一化方法,往往用在深度神 经网络中激活层之前。其作用可以加快模型训练时的收敛速度,使得模型训练过 程更加稳定,避免梯度爆炸或者梯度消失。并且起到一定的正则化作用,几乎代 替了Dropout。 24 Batch Norm 发生在计算?和?之间的,将每一批次数据 的输入值减去这一批次均值然后除以其标0 码力 | 31 页 | 2.03 MB | 1 年前3
共 17 条
- 1
- 2