积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部中文(简体)(13)英语(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    通信优化:数据请求(PULL&PUSH)聚合,同模型多矩阵并发,锁粒度优化,性能提升5-10倍 • 缓存优化:使用堆外内存与LRU过期机制,解决GC引起的性能损耗,性能提升3-5倍 • 分区优化:支持多种分区策略(RANGE/HASH/MOD),解决数据倾斜导致的流量热点瓶颈问题,性能提升2-5倍 • 存储优化:自定义存储方式(ByRow&ByKey),基于row进行矩阵压缩存储,参数内存占用减少90% 减少90% 3 在线机器学习-参数服务器 模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ 模型稳定性/… 一键打包 端口探测 蓝绿部署/灰度发布 AUC/准确率/ 召回率/… 流量切换 版本更新 全量发布 … verson1 verson2 … kubenetes/olsubmit 模型库 3 在线机器学习-模型服务部署 模型评估 • 模型上线部署前指标评估 • 周期使用验证样本进行点击率预估 • 待部署模型与线上模型进行指标对比,评估是否满足上线条件 • 一键部署 • 基于K8S的deployment模式,一键端口分配与模型服务部署 • 基于ZK的服务发现,一键进行流量灰度与发布 • 性能优化 • 通信优化:特征请求与模型计算单元化,在线样本格式压缩 • 计算优化:基于SSE/AVX 指令优化 3
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    10.1.1 生物学中的注意力提示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 10.1.2 查询、键和值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 10.1.3 注意力的可视化 . 有限的。因此,我们可以从随机偏移量开始划分序 列,以同时获得覆盖性(coverage)和随机性(randomness)。下面,我们将描述如何实现随机采样(random sampling)和 顺序分区(sequential partitioning)策略。 308 8. 循环神经网络 随机采样 在随机采样中,每个样本都是在原始的长序列上任意捕获的子序列。在迭代过程中,来自两个相邻的、随机 seq_data_iter_random(corpus, batch_size, num_steps): #@save """使用随机抽样生成一个小批量子序列""" # 从随机偏移量开始对序列进行分区,随机范围包括num_steps-1 corpus = corpus[random.randint(0, num_steps - 1):] # 减去1,是因为我们需要考虑标签 num_subseqs
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    图 1.22 Anaconda 安装界面-1 图 1.23Anaconda 安装界面-2 安装完成后,怎么验证 Anaconda 是否安装成功呢?通过键盘上的 Windows 键+R 键, 即可调出运行程序对话框,输入“cmd”并回车即打开 Windows 自带的命令行程序 cmd.exe。或者点击开始菜单,输入“cmd”也可搜索到 cmd.exe 程序,打开即可。输入 conda 信息的条件下,任意变换图片数据,获得新的图片。图 9.37 演示了在原图上叠加高斯噪声 后的图片数据,图 9.38 演示了通过改变图片的观察视角后获得的新图片,图 9.39 演示了 在原图上随机遮挡部分区域获得的新图片。 图 9.37 添加高斯噪声 图 9.38 变换视角 图 9.39 随机擦除 9.8 过拟合问题实战 前面我们大量使用了月牙形状的 2 分 模式崩塌(Mode Collapse)是指模型生成的样本单一,多样性很差的现象。由于判别器 只能鉴别单个样本是否采样自真实分布,并没有对样本多样性进行显式约束,导致生成模 型可能倾向于生成真实分布的部分区间中的少量高质量样本,以此来在判别器中获得较高 的概率值,而不会学习到全部的真实分布。模式崩塌现象在 GAN 中比较常见,如图 13.16 所示,在训练过程中,通过可视化生成网络的样本可以观察到,生成的图片种类非常单
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    中,我们删除特征 以帮助模型更好地总结新数据并创建更具可解释性的模型。一般来说,特 征选择是减去特征,所以我们只留下那些最重要的特征。 20 特征工程 主要方法 离散型变量处理 分箱/分区 交叉特征 特征缩放 特征提取 …… 特征工程在数据挖掘中有举足轻重的位置数据领域一致认为: 数据和特征决定了机器学习的上限,而模型和算法只能逼近这 个上限而已。 特征工程重要性:
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07深度学习-卷积神经网络

    浅层学到的特征为简单的边缘、角 点、纹理、几何形状、表面等 深层学到的特征则更为复杂抽象,为狗 、人脸、键盘等等 17 边缘检测 神经网络的前几层是通常检测边缘 的,然后,后面的层有可能检测到 物体的部分区域,更靠后的一些层 可能检测到完整的物体 3 × 1 0 × 0 1 × −1 1 × 1 5 × 0 8 × −1 2 × 1 7 × 0 2 × −1 = 3 0 −1 1 0 −8
    0 码力 | 29 页 | 3.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    Transformer的工作流程 从微观视角看自注意力机制 计算自注意力的第一步就是从每个编码器的输入 向量(每个单词的词向量)中生成三个向量。也 就是说对于每个单词,我们创造一个查询向量 (Q)、一个键向量(K)和一个值向量(V)。这三个向 量是通过词嵌入与三个权重矩阵后相乘创建的, 它们的维度是64,而词嵌入和编码器的输入/输 出向量的维度是512. 但实际上不强求维度更小, 这只是一种基于架构上的选择,它可以使多头注 attention)的大部分计算保 持不变。 X1与WQ权重矩阵相乘得到q1, 就是与这个单词相关 的查询向量。最终使得输入序列的每个单词的创建 一个查询向量Q、一个键向量K和一个值向量V。 24 2.Transformer的工作流程 什么是查询向量Q、键向量K和值向量V? 计算得分 分数除以8,然后通过softmax传递结果。 将每个值向量乘以softmax分数(这是 为了准备之后将它们求和)。 意力层在该位置的输出。 Attention(?, ?, ?) = softmax ??? ?? ? 25 2.Transformer的工作流程 通过矩阵运算实现自注意力机制 第一步是计算查询矩阵、键矩阵和值矩阵。为此,我们将 将输入句子的词嵌入装进矩阵X中,将其乘以我们训练的权 重矩阵(WQ,WK,WV)。 x矩阵中的每一行对应于输入句子中的一个单词。我 们再次看到词嵌入向量 (512,或图中的4个格子)和
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 56 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 Python模块-Pandas ⚫ 数据合并 pd.merge(left, right) 类数 据库的数据融合操作. 参数:how,融合方式,包括左连接、右连接、内连 接(默认)和外连接;on,连接键;left_on,左 键;right_on,右键;left_index,是否将left 行索引作 为左键;right_index,是否将right行 索引作为右键. 66 Python模块-Pandas ⚫数据融合
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的 ⚫字典(dict) 字典dict也叫做关联数组,用大括号{ }括起来,在其他语言中也称为map,使用键-值( key-value)存储,具有极快的查找速度,其中key不能重复。 57 Python控制流 ⚫顺序结构 ⚫分支结构 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 Python模块-Pandas ⚫ 数据合并 pd.merge(left, right) 类数 据库的数据融合操作. 参数:how,融合方式,包括左连接、右连接、内连 接(默认)和外连接;on,连接键;left_on,左 键;right_on,右键;left_index,是否将left 行索引作 为左键;right_index,是否将right行 索引作为右键. 67 Python模块-Pandas ⚫数据融合
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    解决方案: 多模态预训练 Vit based 下游任务:  视频分类  视频打标签  推荐模型特征 解决方案: 小样本学习 小样本结构化模型 在线预测服务(EAS) • 一键部署 • 多模型 • 蓝绿部署 • 弹性扩缩 • 推理优化 ML Frameworks ML Service (PaaS) AI Service (SaaS) 机器学习框架(PAI- AI SaaS服务(OCR、语音识别、推荐系统、金融风控、疾病预测等) Infrastructure PAI平台(Platform of Artificial Intelligence) • 一键部署、弹性扩缩 • 多框架、多语言 • 推理优化Blade • 多维度监控+报警 • 自定义镜像 • 全托管+半托管 • 分布式训练优化 • 超大资源池 智能标注 可视化建模(Designer)
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品

    labelImg $ labelImg $ labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE] 检测数据标注方法 1.jpg 1.xml 检测数据标注 快捷键 “Hello TensorFlow” Try it! 应用:使用 TensorFlow 2 训练 RetinaNet “Hello TensorFlow” Try it! 应用:使用 RetinaNet
    0 码力 | 67 页 | 21.59 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
微博在线机器学习深度实践黄波动手v2PyTorch深度学习课程温州大学项目流程07卷积神经网络神经网神经网络13Transformer01引言阿里云上建模程孟力TensorFlow快速入门实战商品检测使用RetinaNet瞄准货架
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩