AI大模型千问 qwen 中文文档
AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 快速开始 CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda 5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda"0 码力 | 56 页 | 835.78 KB | 1 年前3机器学习课程-温州大学-11深度学习-序列模型
2023年05月 深度学习-序列模型 黄海广 副教授 2 03 长短期记忆(LSTM) 04 双向循环神经网络 本章目录 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 3 03 长短期记忆(LSTM) 04 双向循环神经网络 1.序列模型概述 01 序列模型概述 02 循环神经网络(RNN) 循环神经网络(RNN) 05 深层循环神经网络 4 1.序列模型概述 循环神经网络(RNN)之类的模型在语音识别、自然语言处理和 其他领域中引起变革。 5 数学符号 在这里?<1>表示Harry这个单词,它就是一个第 4075行是1,其余值都是0的向量(上图编号1所示 ),因为那是Harry在这个词典里的位置。 ?<2>是第6830行是1,其余位置都是0的向量(上 图编号2所示)。 同一层节点之间无关联,从而导致获取时序规则方面功 能不足 循环神经网络可以解决时序问题 基于语言模型(LM),故可以捕捉时序规则信息 它是如何实现的? 7 03 长短期记忆(LSTM) 04 双向循环神经网络 2.循环神经网络(RNN) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 8 2.循环神经网络(RNN)0 码力 | 29 页 | 1.68 MB | 1 年前3李东亮:云端图像技术的深度学习模型与应用
云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward0 码力 | 26 页 | 3.69 MB | 1 年前3《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务
扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍 • 使用 TensorFlow 2 训练分类网络 from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的 tf.keras.Model • Class tf.compat.v1.keras.Model • Class tf.compat.v1.keras.models.Model • Model • Class tf.keras.models.Model 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database0 码力 | 52 页 | 7.99 MB | 1 年前3从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱
从推荐模型的基础特点看 袁镱 腾讯 个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时0 码力 | 22 页 | 6.76 MB | 1 年前3机器学习课程-温州大学-特征工程
03 特征提取 04 特征选择 4 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 文献解读 定义 目的 作用 是把原始数据转变为模型的训练数据的过程 获取更好的训练数据特征,使得机器学习模型逼 近这个上限 ➢ 使模型的性能得到提升 ➢ 在机器学习中占有非常重要的作用 构成 ➢ 特征构建 ➢ 特征提取 ➢ 特征选择 度。于是诞生了机器学习界的 名言: 成功的机器学习应用不是 拥有最好的算法,而是拥 有最多的数据! 数据决定一切 数据大小 准 确 率 1. 相关概念 6 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 项目 特征提取 特征选择 共同点 都从原始特征中找出最有效的特征 都能帮助减少特征的维度、数据冗余 区别 ➢ 强调通过特征转换的方式得 到一组具有明显物理或统计 特征提取VS特征选择 1. 相关概念 7 2. 特征构建 01 相关概念 02 特征构建 03 特征提取 04 特征选择 8 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 特征构建:是指从原始数 据中人工的找出一些具有 物理意义的特征。 方法:经验、属性分割和 结合 操作:使用混合属性或者 组合属性来创建新的特征 ,或是分解或切分原有的0 码力 | 38 页 | 1.28 MB | 1 年前3动手学深度学习 v2.0
. . . . . . . . . . . . . . . . . . . . 96 3.2.3 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.4 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3.3 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . 7 信息论基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.4.8 模型预测和评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.5 图像分类数据集 .0 码力 | 797 页 | 29.45 MB | 1 年前3Qcon北京2018-《文本智能处理的深度学习技术》-陈运文
Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要 分支,用于分析、理解和生成自然语言,方便人机交流 应用:智能问答,机器翻译,文本分类,文本摘要,标 签提取,情感分析,主题模型 NLP发展简史 1950S 1980s 1990s 2006~至今 以机器翻译为开端,作 为早期尝试,但不是很 成功 基于统计机器学习技术 及语料库,使用统计模 型,NLP发展产生革新 深度学习 例如CNN、RNN等 机器学习 例如Logistics Regression AI 例如Knowledge Base 标准机器学习过程 标注数据 机器学习算法 数据 已训练模型 预测 训练 预测 深度学习和传统机器学习 输入数据 深度学习算法 输入数据 特征工程 传统机器学习算法 非常耗费时间 以文本分类过程举例,常见 的特征提取算法包括: 词频 TF-IDF 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高0 码力 | 46 页 | 25.61 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
部分,主要介绍 PyTorch 相关基础,为后续算法 实现铺垫;第 6~9 章为第 3 部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 10~15 章为模型算法应用部分,主要介绍常见的算法与模型,让读者能够 学有所用。 在本书中编写时,很多英文词汇尚无法在业界找到一个共识翻译名,因此作者备注翻译 的英文原文,供读者参考,同时也方便读者日后阅读相关英文文献时,不至于感到陌生。 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂皮毛,同时也限于时间和篇幅关系,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 龙良曲 2021 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验0 码力 | 439 页 | 29.91 MB | 1 年前3QCon北京2018-《深度学习在微博信息流排序的应用》-刘博
新浪微博机器学习研发部关系流算法负责人 1 2 3 深度学习应用与实践 常规CTR方法排序 微博Feed流排序场景介绍 目录 微博Feed流产品介绍—排序场景 Ø 信息获取方式 • 主动获取(关注) Ø 内容形式 • 博文/文章/图片/视频/问答/话题/… • 被动获取(推荐) Ø 微博—社交媒体领跑者 • DAU:1.72亿,MAU:3.92亿 • 关注流基于关系链接用户与内容 • 海量计算、超大规模模型优化 1 2 3 深度学习应用与实践 常规CTR方法排序 微博Feed流排序场景介绍 目录 CTR概要介绍 数据 特征 目标 模型 效果 Ø CTR任务特点 Ø CTR预估常用算法 • LR • GBDT • FM • 大量离散特征、高维稀疏 • 特征关联性挖掘 CTR一般流程 业务目标与模型选择 Ø 模型优化目标 • 互动(转发/评论/赞) 互动(转发/评论/赞) 点击(图片/视频/文章/链接等) 阅读时长 Ø 模型选择 • 线性模型LR+特征工程 • 多目标预估 • 排序基于pointwise的 learning to rank 互动模型 点击模型 阅读模型 Score = ?)*+,-./+ ∗ ???? + ?/6)/7 ∗ ???? + ?-,.8 ∗ ???? 特征工程 Ø 特征工程非常重要 • 手动组合——专家知识0 码力 | 21 页 | 2.14 MB | 1 年前3
共 69 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7