QCon北京2018-《深度学习在微博信息流排序的应用》-刘博微博Feed流产品介绍—排序场景 Ø 信息获取方式 • 主动获取(关注) Ø 内容形式 • 博文/文章/图片/视频/问答/话题/… • 被动获取(推荐) Ø 微博—社交媒体领跑者 • DAU:1.72亿,MAU:3.92亿 • 关注流基于关系链接用户与内容 微博Feed流特点介绍—排序原因 Ø 产品特点 • 传播性强 Ø 存在问题 • 信息过载 • 互动性好 • 信噪比低 信噪比低 Ø 排序目标 • 提高用户的信息消费效率 • 提升用户黏性 技术挑战 Ø 规模大 • 用户和Feed内容数量大 Ø 指标量化 • 用户体验 • 内容更新快,实时性要求高 • 内容形式多样、非结构化 • 海量计算、超大规模模型优化 1 2 3 深度学习应用与实践 常规CTR方法排序 微博Feed流排序场景介绍 目录 CTR概要介绍 数据 特征 目标 模型 手动组合——专家知识 • categorical特征 • 离散化/归一化处理 • conitnues特征 • one-hot 表示 • 假设检验方式 • 相关系数评估 • 特征组合 • GBDT+互信息——有效挖掘 非线性特征及组合 皮尔逊相关系数特征评估 标签匹配度特征相关系数特征评估 样本采集 Ø 存在问题 • 头部效应 • 实时反馈类收集与在线存在差异性 Ø 解决方案 • 正负样本比例严重失衡0 码力 | 21 页 | 2.14 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 证、ISO9001质量管理体系认证、双软认证等最全面的企业服务资质。 权威认证的人工智能服务,可充分保障客户业务实践与业务安全 l 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 训练 预测 深度学习和传统机器学习 输入数据 深度学习算法 输入数据 特征工程 传统机器学习算法 非常耗费时间 以文本分类过程举例,常见 的特征提取算法包括: 词频 TF-IDF 互信息 信息增益 期望交叉熵 主成分分析 … 特征工程需要手工寻找特 征,花费大量人力,特征的 好坏往往决定最终结果 深度学习基础结构 基础神经元结构 多个神经元连接组成神经网络 字词表示 计算机 电脑 anding-LSTMs/ LSTM原理 Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 1,单元状态丢弃 2,新信息选择 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层0 码力 | 46 页 | 25.61 MB | 1 年前3
谭国富:深度学习在图像审核的应用腾讯优图内容审核能力介绍 02 深度学习技术介绍 03 内容审核的扩展和延伸 00 图像审核的行业背景 SACC2017 内容审核 - 行业现状 不良信息泛滥,监管猝不及防 Ø 随着互联网的飞速发展和信息量的猛增, 大量的色情图片、暴力等不良信息夹杂其 中,严重影响着互联网的健康发展。 Ø 直播行业的快速兴起,使得视频中不良信 息含量更加迅猛增长,色情暴力等不雅视 频频繁流出,导致各网络直播平台面临危 技术诉求:自动识别图片或视频中出现的文 字、二维码、logo等内容以及违规人像、淫 秽、血腥、暴力、极端主义、恐怖主义图像 等,方便平台进行违规处理和风险管控。 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 极端主义、恐怖主义标识 SACC2017 内容识别 – 人脸识别 l 政治敏感人物识别, 直播, 视频等场景 Ø 上亿级别的人脸检索,秒级的检索速度从黑名 单,白名单数据库中返回目标人脸信息。 Ø 技术指标:优图人脸识别通过传统方法和深度 学习技术结合,以空间面孔墙和微众银行远程 核身为基础,在性能上达到LFW 99.80%。 Ø QQ,微云等: 非法设置领导人头像, 公众人0 码力 | 32 页 | 5.17 MB | 1 年前3
Chatbots 中对话式交互系统的分析与应用DSTC3中定义的部分动作类别 语言理解 (SLU) Steve Young (2016) 状态追踪 Dialogue State Tracking (DST) • 对话状态应该包含持续对话所需要的各种信息 • DST问题:依据最新的系统和用户动作,更新对话状态 • Q:如何表示对话状态 状态追踪 (DST) 旧状态 用户动作 系统动作 新状态 策略优化 Dialogue Policy • Seq2seq+Attention Question 闲聊机器人 • 问题 • 容易产生“安全”的答案 • 目标函数中考虑 • 对话容易继续进行 • 降低产生“我不知道”这类答案的可能性 • 带来新的信息 • 让产生的答复与之前的不同 • 语义要连贯 • 加入互信息:同时考虑从answer到question的概率 Deep Reinforcement Learning Learning for Dialogue Generation 闲聊机器人:其他因素 • 小心你的训练数据 • 如何引入上下文信息 • 如何加入外部信息 • 如何产生个性化答复 总结:三个Bot框架 • IR-Bot(成熟度: ) • 基于检索/排序的流程,历史悠久,技术成熟 • 引入深度学习,计入长效依赖,生成更好的语句表达 • Task-Bot(成熟度: ) • 解决任务型多轮问答 • 深度学习端到端?0 码力 | 39 页 | 2.24 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言(Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪 (Audi)等汽车制造商Y已经通过摄像头、激光 雷达、雷达和超声波传感器从环境中获取图 像,研发自动驾驶汽车来探测目标、车道标 志和交通信号,从而安全驾驶。 安防 中国在使用人脸识别技术方面无疑处于领先地 位,这项技术被广泛应用于警察工作、支付识 别、机场安检,甚至在北京天坛公园分发厕 纸、防止厕纸被盗,以及其他许多应用。 医疗 ,也是 一门横跨语言学、计算 机科学、数学等领域的交叉学科。自然语 言处理,是指用计算机对自然语言 的形、音、义等信息进行处理 ,即对字、词、句、篇章的输入、输出、识别、 分析、理解、生 成等的操作和加工。自然语言处理的具体表现形式包括机器 翻译 、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识 别等。 可以说,自然语言处理就是要计算机理解自然语言,自然 语言处理机制涉及 两个流程,包括自然语言理解和自然语言生成 两个流程,包括自然语言理解和自然语言生成 ,自然语言理解是让计算机把 输入的语言变成有意思的符号和关 系,然后根据目的再处理;自然语言生成 则是把计算机数据转 化为自然语言。实现人机间的信息交流,是人工智能 界、计算 机科学和语言学界所共同关注的重要问题。 自然语言处理技术的技术层次 自然语言处理技术的发展历程 语音分析 词法分析 句法分析 语用分析 语义分析 20世纪70年代 • • 理性主义方法0 码力 | 80 页 | 5.38 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 关于线性代数的更多信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 微积分 . . . . . . . . . . . 6 损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.4.7 信息论基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.4.8 模型预测和评估 ∂y ∂x:y关于x的偏导数 • ∇xy:y关于x的梯度 • � b a f(x) dx: f在a到b区间上关于x的定积分 • � f(x) dx: f关于x的不定积分 14 目录 概率与信息论 • P(·):概率分布 • z ∼ P: 随机变量z具有概率分布P • P(X | Y ):X | Y 的条件概率 • p(x): 概率密度函数 • Ex[f(x)]: 函数f对x的数学期望0 码力 | 797 页 | 29.45 MB | 1 年前3
《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品‘skateboard’, ‘surfboard’,…] IMAGENET Large Scale Visual Recognition Challenge (ILSVRC) ILSVRC 具体信息: 识别小类: 21841 图像总数: 1400万+ 带有 Bounding box 的图像总数: 1,034,908 带有 SIFT 特征的识别小类: 1000 带有 SIFT 特征的图像总数: 特征的图像总数: 1200万 扩展:目标检测更多应用场景介绍 目标检测应用:仓库流水审计 目标检测应用:仓库流水审计 目标检测应用:仓库盘点 无人智能盘点 人工盘点 目标检测应用:安全防护检测 目标检测应用:内容审核 目标检测应用:车流统计 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程0 码力 | 67 页 | 21.59 MB | 1 年前3
复杂环境下的视觉同时定位与地图构建。 常见的单目摄像头 激光雷达 普通手机摄像头也可作为传感器 双目摄像头 微软Kinect彩色-深度(RGBD)传感器 手机上的惯性传感器(IMU) SLAM运行结果 • 设备根据传感器的信息 • 计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 小米扫地机器人 以激光雷达为核心 戴森360°Eye扫地机器人 以视觉为核心(顶部有全景摄像头) SLAM应用介绍 • 无人机 大疆Phantom4 结合双目立体视觉和超声波,实现空中精准悬停和安全航线自动生成 SLAM应用介绍 • 无人车 MobileEye、特斯拉等自动驾驶方案 以廉价的摄像头为主 Google无人车项目Waymo 使用高精度激光雷达构建地图 SLAM应用介绍0 码力 | 60 页 | 4.61 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版2021126 模型部署 15.7 参考文献 预览版202112 人工智能绪论 我们需要的是一台可以从经验中学习的机器。 −阿兰·图灵 1.1 人工智能 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及 极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给 机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需 box)表示,并分类出边界框中物体的类别信息,如图 1.15 所示。常 见的目标检测算法有 RCNN、Fast RCNN、Faster RCNN、Mask RCNN、SSD、YOLO、 RetinaNet 系列等。 语义分割(Semantic Segmentation) 是通过算法自动分割并识别出图片中的内容,可以 将语义分割理解为像素点的分类问题,分析每个像素点的物体的类别信息,如图 1.16 所 示。常见的语义分割模型有 图 1.15 目标检测效果图 图 1.16 语义分割效果图 视频理解(Video Understanding) 随着深度学习在 2D 图片的相关任务上取得较好的效 果,具有时间维度信息的 3D 视频理解任务受到越来越多的关注。常见的视频理解任务有 视频分类、行为检测、视频主体抽取等。常用的模型有 C3D、TSN、DOVF、TS_LSTM 等。 图片生成(Image Generation)0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库谁能确定它们讲述了什么故事?并不是所有人都能找 到。那里有两扇门,就是通往短暂的 Oneiroi 的通道;一个是用号角制造的,一个是 用象牙制造的。穿过尖锐的象牙的 Oneiroi 是诡计多端的,他们带有一些不会实现的 信息;那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成 的。” Homer, Odyssey 19. 562 ff (Shewring translation). 为什么选择 KERAS? add(Activation('relu')) 3.1.2 指定输入数据的尺寸 模型需要知道它所期望的输入的尺寸。出于这个原因,顺序模型中的第一层(只有第一层, 因为下面的层可以自动地推断尺寸)需要接收关于其输入尺寸的信息。有几种方法来做到这一 点: • 传递一个 input_shape 参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元 组,其中 None 表示可能为任何正整数)。在 input_shape 的样本处理完成后,其内部状态(记忆)会被记录 并作为下一个 batch 的样本的初始状态。这允许处理更长的序列,同时保持计算复杂度的可控 性。 你可以在 FAQ 中查找更多关于 stateful RNNs 的信息。 from keras.models import Sequential from keras.layers import LSTM, Dense import numpy as np data_dim0 码力 | 257 页 | 1.19 MB | 1 年前3
共 45 条
- 1
- 2
- 3
- 4
- 5













