《TensorFlow 2项目进阶实战》7-TensorFlow2进阶使用TensorFlow 2 进阶使用 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 使⽤ TensorFlow 2 实现图像数据增强 • 使⽤ TensorFlow 2 实现分布式训练 • 使⽤ TensorFlow Hub 迁移学习 • 使⽤ @tf.function 提升性能 • 使⽤ TensorFlow Serving 部署云端服务 • 使⽤ TensorFlow 项目 Step 4:在 Android Studio 中安装物品识别 APP Step 5:在 Android Studio 中运行物品识别 APP 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程0 码力 | 28 页 | 5.84 MB | 1 年前3
《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想API 完全兼容原生 Keras • 支持保存和加载 TensorFlow SavedModel • 支持 Eager Execution • 支持分布式训练 tf.data:功能强大的数据管理模块 支持多种数据处理 图像解码 Shuffle py_function 重采样 支持多种数据格式 图像文件 文本文件 CSV 文件 NumPy 数组 Python 生成器 TFRecord0 码力 | 40 页 | 9.01 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务• TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍 • 使用 TensorFlow 2 训练分类网络 目录 TensorFlow 2 开发环境搭建 TensorFlow 2 支持的操作系统 from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的 tf.keras.Model • Class tf.compat.v1.keras.Model • Class tf.compat.v1.keras.models.Model0 码力 | 52 页 | 7.99 MB | 1 年前3
《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤业务落地篇:实现货架洞察 Web 应用 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 串联 AI 流程理论:商品检测与商品识别 • 串联 AI 流程实战:商品检测与商品识别 • 展现 AI 效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI peewee Flask-SQLAlchemy 快速入门 Flask-SQLAlchemy 快速入门 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS 安装依赖 requirements.txt 安装依赖 requirements.txt 测试 flask 是否能启动 $ python manage.py 扩展启动脚本 manage.py 实现 AI 流水线 ai_pipeline ai_pipeline.py 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS “Hello TensorFlow” Try it! 交付 AI SaaS:10 分钟快速掌握容器部署 更新依赖 requirements.txt 为 AI SaaS 编写 Dockerfile 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build –t tf2-ai-saas0 码力 | 54 页 | 6.30 MB | 1 年前3
《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品商品识别篇:使用 ResNet 识别你的货架商品 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 基础:图像分类问题定义与说明 • 基础:越来越深的图像分类网络 • 应⽤用:检测SKU抠图与分类标注流程 • 应⽤用:分类训练集与验证集划分 • 应⽤用:使⽤用TensorFlow 2训练ResNet • 应⽤用:使用ResNet识别货架商品 • 扩展:图像分类常用数据集综述 图像分类应用:户型图识别(空间、家具) 原始户型图 空间分割 (整体效果) 空间分割 (中间结果) 图像分类应用:智能相册 图像分类应用:瑕疵检测 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程0 码力 | 58 页 | 23.92 MB | 1 年前3
《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品商品检测篇:使用 RetinaNet 瞄准你的货架商品 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 基础:目标检测问题定义与说明 • 基础:R-CNN系列二阶段模型综述 • 基础:YOLO系列一阶段模型概述 • 基础:RetinaNet 与 Facol Loss 带来了什么 • 应用:检测数据准备与标注 • 应用:划分检测训练集与测试集 • 应用:生成CSV 目标检测应用:仓库流水审计 目标检测应用:仓库盘点 无人智能盘点 人工盘点 目标检测应用:安全防护检测 目标检测应用:内容审核 目标检测应用:车流统计 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程0 码力 | 67 页 | 21.59 MB | 1 年前3
《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案方案设计篇:如何设计可落地的AI解决方案 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么 产品价格指数 • 促销执行统计 客户需求:棚格图推荐设计与销量预测 如何落地项目第一期? 短期目标:自动化陈列审核和促销管理 业务落地基础:货架数字化 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 编号 业务落地:自动化陈列审核和促销管理 陈列 必分销 新品 纯度 排面 SKU 种类 数量 位置 品类 占比 货架 设计 场景 层数 Showcase AI SaaS Showcase AI 通用物品识别平台架构 品 识 AI 中 台 AI 算法库 AI 核心模块 AI 行业模型 数据集 模型训练 模型管理 AutoML AI 物品库 服务管理 模型压缩 棚格图识别 货架巡检 商品推荐 陈列审核 入库审计 货物盘点 构件识别 CAD解析 规则审查 户型图识别 视频盘点 自动分拣 细粒度识别 目标检测0 码力 | 49 页 | 12.50 MB | 1 年前3
动手学深度学习 v2.0效率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 参数管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2 深度循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 9.3.1 函数依赖关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 9.3.2 简洁实现 . . 码,向读者展示如何解决实践中的问题;(4)允许我们和社区 的快速更新;(5)由一个论坛2作为补充,用于技术细节的互动讨论和回答问题。 这些目标经常是相互冲突的。公式、定理和引用最好用LaTeX来管理和布局。代码最好用Python描述。网页 原生是HTML和JavaScript的。此外,我们希望内容既可以作为可执行代码访问、作为纸质书访问,作为可下 载的PDF访问,也可以作为网站在互联网上访0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112水平, 如在围棋上 AlphaGo 智能程序已经击败人类最强围棋专家之一柯洁,在 Dota2 游戏上 OpenAI Five 智能程序击败世界冠军队伍 OG,同时人脸识别、智能语音、机器翻译等一项 项实用的技术已经进入到人们的日常生活中。现在我们的生活处处被人工智能所环绕,尽 管目前能达到的智能水平离通用人工智能(Artificial General Intelligence,简称 AGI)还有一 深度学习的概念以及它们之间的联 系与区别。 1.1.1 人工智能 人工智能是让机器获得像人类一样具有思考和推理机制的智能技术,这一概念最早出 现在 1956 年召开的达特茅斯会议上。这是一项极具挑战性的任务,人类目前尚无法对人脑 的工作机制有全面、科学的认知,希望能制造达到人脑水平的智能机器无疑是难于上青 天。即使如此,在某个方面呈现出类似、接近甚至超越人类智能水平的机器被证明是可行 的。 GPU 训练的 AlexNet 发布后,深度学习的真正潜力才得以发挥。传统的机器学习算法并不像神经网络 这样对数据量和计算能力有严苛的要求,通常在 CPU 上串行训练即可得到满意结果。但是 深度学习非常依赖并行加速计算设备,目前的大部分神经网络均使用 NVIDIA GPU 和 Google TPU 等并行加速芯片训练模型参数。如围棋程序 AlphaGo Zero 在 64 块 GPU 上从 零开始训练了0 码力 | 439 页 | 29.91 MB | 1 年前3
AI大模型千问 qwen 中文文档高级用法!” 1.4 llama.cpp llama.cpp 是一个 C++ 库,用于简化 LLM 推理的设置。它使得在本地机器上运行 Qwen 成为可能。该库是 一个纯 C/C++ 实现,不依赖任何外部库,并且针对 x86 架构提供了 AVX、AVX2 和 AVX512 加速支持。此 外,它还提供了 2、3、4、5、6 以及 8 位量化功能,以加快推理速度并减少内存占用。对于大于总 VRAM conda 环境中安装所需的依赖项。这 里以 MacOS 系统为例进行实践操作。 conda create -n textgen python=3.11 conda activate textgen pip install torch torchvision torchaudio 接下来,您可以根据您的操作系统执行 pip install -r 命令来安装相应的依赖项,例如, pip install 和 q8_0 。欲了解更多信息,请访问 llama.cpp 。 1.10 vLLM 我们建议您在部署 Qwen 时尝试使用 vLLM 。它易于使用,且具有最先进的服务吞吐量、高效的注意力键值 内存管理(通过 PagedAttention 实现)、连续批处理输入请求、优化的 CUDA 内核等功能。要了解更多关于 vLLM 的信息,请参阅 论文 和 文档 。 1.10.1 安装 默认情况下,你可以通过0 码力 | 56 页 | 835.78 KB | 1 年前3
共 51 条
- 1
- 2
- 3
- 4
- 5
- 6













