积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(33)机器学习(33)

语言

全部中文(简体)(32)英语(1)

格式

全部PDF文档 PDF(33)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 33 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    mers 我们建议您使用 Python3.8 及以上版本和 Pytorch 2.0 及以上版本。 3 Qwen 1.2 快速开始 本指南帮助您快速上手 Qwen1.5 的使用,并提供了如下示例:Hugging Face Transformers 以及 ModelScope 和 vLLM 在部署时的应用实例。 1.2.1 Hugging Face Transformers & ModelScope ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer 为了解决下载问题,我们建议您尝试从 ModelScope 进行下载,只需将上述代码的第一行更改为以下内容: from modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非常简单。下面我们将展示一个如何使用它的示例: ... # Reuse the code before `model
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    1 分布偏移的类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4.9.2 分布偏移示例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.9.3 分布偏移纠正 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 iv 5.1.3 在前向传播函数中执行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.4 效率 . . . . . . . . . . . Adadelta算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.9.2 代码实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.10 Adam算法
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2 图像分类模型的示例代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2.1 使用 ResNet50 进行 ImageNet 详细配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.4 使用抽象 Keras 后端编写新代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.5 后端函数 . . . . . . . . . . . . . 请求新功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.4 请求贡献代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 21.5 Pull Requests
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    实战的资料已经很多了,但是这些资料也各有优点和缺点,有 时候也很难让新手有比较好的选择。 当我们明白何为“神经网络”,何为“反向传播”时,我们就已经具备了开始搭建和训练网络 的能力。此时,最好的方法就是给我们一个由简及难的程序示例,我们能够快速搭建出一个网络, 我们可以开始训练,以及指导如何计算训练后的结果准确率等信息。 这也是我要开始写这么一本小书的初衷,我会把本小书控制在 3 小时的学习时间之内。也就 是说,只知道一丁点 pytroch 搭建一个有模有样的神经网络系统了。 几年前,我在 Mooc 的《人工智能实战——Tensorflow 笔记》这门课上入门了 tensorflow,我 很喜欢这种讲授的风格。尽管这门课讲到后面,代码量也因为过于巨大从而导致上课节奏不好控 制,但它的目的达到了——学习者可以快速入门 tensorflow。而后来,因为很多项目的源码都是基 于 pytorch 的,我也开始转战 pytorch。 杂化,而是用到什么就讲什么。本书不可避免要 参考 [2] 的讲解方式,但我们对讲解顺序和内容,以及程序代码都做了大量的改进。说了那么多, 总之,我们的目标是写一个最好的最容易上手的 pytorch 入门教程——从全连接网络开始。 书中的示例代码在网站页面可以找到。每节末尾会提示“本节代码见 chapterX.py”。 20211006:完成本书第一版。 5 1. 准备章节 1.1 导入
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo --board-enable true \ #是否开启Tensorboard服务� --conf tf.file.download.thread.nums=10 #其他参数设置� 提交脚本示例(分布式版本):� TensorFlow on Yarn设计 Yarn首页作业信息:� 作业类型 集群GPU资源概况 作业分配到的GPU数量 TensorFlow on Yarn设计 启动Tensorboard服务:� TensorFlow on Yarn技术细节揭秘 降低已有tensorflow程序迁移成本:� (1)单机模式 不需要修改代码 (2)分布式模式(最多修改三行代码) cluster = !.train.ClusterSpec(json.loads(os.environ[“TF_CLUSTER_DEF”])) job_name
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    ������������������������������������������������������������������������������������� 9 1.5.2 线性回归代码演示 ������������������������������������������������������������������������������������������������ Pytorch 的的历史与发展,主要模 块构成与基础操作代码演示。重点介绍 Pytorch 的各个组件、编程方式、环境 搭建、基础操作代码演示。本章对有 Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    来将一个低清模糊图像变换为具有丰富细节的高清图像。 用 VGG 网络作为判别器,用参数化的残差网络表示生成器,实验结果如 图所示,可以看到 GAN 生成了细节丰富的图像。 图 基于GAN的图像生成示例 3. GAN的应用 27 GAN的应用 语音和语言领域 a. 用 GAN 来表征对话之间的隐式关联性,从而生成对话文本。 b. 用 CNN 作为判别器, 判别器基于拟合 LSTM 的输出,用矩匹配来解决优化 还可以与强 化学习、模仿学习等相合。 a. 有人提出用MalGAN 帮助检测恶意代码,用 GAN生成具有对抗性的病毒代 码样本,实验结果表明基于 GAN 的方法可以比传统基于黑盒检测模型的方法 性能更好。 b. 也有人提出了一个扩展 GAN 的生成器,用判别器来正则化生成器而不是 用一个损失函数,用国际象棋实验示例证明了所提方法的有效性。 3. GAN的应用 29 03 GAN 的应用
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 进行实现。考虑到本人能力有限、行文仓促,可 以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 Github Issues 页面提交: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    电子邮箱: jim.cheng@ususing.com 5 议程 • 深度学习与商品搜索  矢量化搜索技术简介  基于词语聚类的矢量化  基于用户会话的矢量化  原型评测结果及效果示例 • 深度学习与聊天机器人  聊天机器人简介  聊天机器人主要模块及架构  深度学习探索  聊天机器人评测结果 6 • 语义词汇差异  理发器, 理发推子, 电推子  血糖计, • 该技术不仅召回与搜索词完全匹配的结果,还可召回与搜索词文本不匹配、但含义近似的结果。 效果示例 如:经测评,当搜索词为“松下筒灯”, 易购网站返回6个相关结果, 美研方案返回64个相关结果 现有方案 原型系统 16 • 首先进行词语的矢量化 • 词语矢量作为各种深度学习模型的输入值 • 示例深度学习架构: dual RNN ( dual LSTM) • 利用用户反馈数据来补充训练样本 是互联网的新开始。--Ted Livingston, CEO of KiK • 聊天机器人将从根本上变革每个用户对人机交互的体验。 --Satya Nadella, Microsoft CEO 18 应用示例:苏宁易购机器人Sunny,百度度秘,Amazon Echo 19 问题分析与用户分析 网页前端 移动应用前端 系统架构图 会话分析 用户意图识别 检索模块 段落或句 子检索 文档检
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    Python PyTorch 1+ TensorFlow 2+ 类型 nn.nd Tensor Tensor 自动求导 无 支持,示例 x=torch.tensor([2.0,3.6],requir e s_grad=True) 支持,①对变量求导示例 v=tf.Variable([3.2, 4.3], dtype=tf.float16), #TensorFlow一 般使用梯度磁 带tf Variable可以通过参数 trainable 控制是否可学习,缺 省是True。 是否支持GPU 不支持 支持 支持 常量示例 5.6 torch.tensor([5.6]) a=tf.constant([3.2, 4.3], dtype=tf.float16) 变量示例 x=10.5 torch.tensor([5.6]) v=tf.Variable([3.2, 4.3], dtype=tf
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
AI模型千问qwen中文文档动手深度学习v2Keras基于Python连接神经网络神经网神经网络实战pytorchTensorFlowonYarn遇上数据PyTorchOpenVINO开发系列教程第一一篇第一篇机器课程温州大学15GAN深度学习电子商务电子商务应用03入门
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩