阿里云上深度学习建模实践-程孟力阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景 OCR识别 人脸核身 智能风控 自动驾驶 语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 机器学习框架(PAI-TensorFlow/PAI-PyTorch/Caffe /Alink/…) 计算引擎(MaxCompute / EMR / Flink) 基础硬件(CPU/GPU/FPGA/NPU) 阿里云容器服务(ACK) • 200+组件 • 数十个场景化模版 • 所见即所得 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard0 码力 | 40 页 | 8.51 MB | 1 年前3
华为云深度学习在文本分类中的实践-李明磊华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容: 买没几天就降价一点都不开心,闪存跑分就五百多点点 --- 外观漂亮音质不错,现在电子产品基本上都是华为的了 --- 汽车不错,省油,性价比高 --- 这个政策好啊,利国利民 --- 85 0.9 0.95 人工标注 系统标注 效果:F1 未标注集合 ???????????? ???????????? 种子语料 机器学习模型 人工标注 15 华为云主动学习平台 16 华为云主动学习平台 17 1 2 4 3 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 18 情感分析 0.00% 20.00% 40.00% 60.00%0 码力 | 23 页 | 1.80 MB | 1 年前3
AI大模型千问 qwen 中文文档已经正式成为 LM Studio 的一部分。祝你使用愉快! 1.5 Ollama Ollama 帮助您通过少量命令即可在本地运行 LLM。它适用于 MacOS、Linux 和 Windows 操作系统。现在, Qwen1.5 正式上线 Ollama,您只需一条命令即可运行它: ollama run qwen 接着,我们介绍在 Ollama 使用 Qwen 模型的更多用法 1.5.1 快速开始 去文件夹中: git clone https://github.com/oobabooga/text-generation-webui cd text-generation-webui 你可以根据你的操作系统直接运行相应的脚本,例如在 Linux 系统上运行 start_linux.sh ,在 Windows 系统上运行 start_windows.bat ,在 MacOS 系统上运行 start_macos -n textgen python=3.11 conda activate textgen pip install torch torchvision torchaudio 接下来,您可以根据您的操作系统执行 pip install -r 命令来安装相应的依赖项,例如, pip install -r requirements_apple_silicon.txt 对于 requirements 中的0 码力 | 56 页 | 835.78 KB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒特征向量 AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 错误概率 97% 通过率 6位密码时代 1/100万 错误概率 95% 通过率 6000万张人脸训练 2016 2017 What’s Next? 2018 自我演化的异构人工智能云 云原生的深度学习数据闭环 自进化深度学习系统 高度定制的 图片、特征仓库 深度学习 应用服务 场景相关业务 数据清洗-查询 深度学习训练平台 模型测试与验证 深度学习算法在产品应用中的挑战 Kubernetes在异构系统调度中的挑战 • Kubernetes版本发布快,新特性更新频繁,对异构调度的支持不断加强;但配套设施落后(e.g. Spark on K8s, GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume0 码力 | 23 页 | 9.26 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。0 码力 | 13 页 | 5.99 MB | 1 年前3
谭国富:深度学习在图像审核的应用图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 高准确率: 在内部业务上测试,准确率97%,覆 盖80%以上的案例 Ø 腾讯云,承担每天数亿的图像审核, 已经 累计支持上百家客户。 SACC2017 深度学习 – 打通训练和应用的闭环 RapidFlow 训练平台 底层硬件加速 操作系统 应用场景 add conv w x b 公共计算库 X86 优化 Android 优化 iOS 优化 GPU 优化 内存池 硬件设备 网络模型 • 越来越多的应用场景,云服务,Android,iOS, 闸机嵌入式 • 越来越复杂的限制条件, 内存,功耗,延迟 • com/tencent/ncnn • 针对移动端优化版本 • 开源建设, 2.6k+ stars SACC2017 从静到动:结合视频识别能力 从图像到声音: 音频识别 03 图像内容审核的扩展和延伸 优图-腾讯云 天御内容识别解决方案 Deep Eye SACC2017 腾讯优图-腾讯云天御 内容审核解决方案 SACC2017 针对直播 – 视频鉴黄解决方案 • 在部署了DeepEye视频直播鉴黄解决方案后,系0 码力 | 32 页 | 5.17 MB | 1 年前3
动手学深度学习 v2.0ti‐label classification)。举个例子,人们在技术博客 上贴的标签,比如“机器学习”“技术”“小工具”“编程语言”“Linux”“云计算”“AWS”。一篇典型的文章可 能会用5~10个标签,因为这些概念是相互关联的。关于“云计算”的帖子可能会提到“AWS”,而关于“机 器学习”的帖子也可能涉及“编程语言”。 此外,在处理生物医学文献时,我们也会遇到这类问题。正确地标记文献很重要,有利于研究人员对文献 大多数深度学习研究者和实践者都可以使用一台具有相当数量的内存、计算资源、某种形式的加速器(如一 个或者多个GPU)的计算机。计算机由以下关键部件组成: • 一个处理器(也被称为CPU),它除了能够运行操作系统和许多其他功能之外,还能够执行给定的程序。 它通常由8个或更多个核心组成; • 内存(随机访问存储,RAM)用于存储和检索计算结果,如权重向量和激活参数,以及训练数据; • 一个或多个以太网 • 最后,带宽的大幅增加迫使计算机设计者将固态驱动器与PCIe总线相连接,这种驱动器称为NVMe(非 易失性内存增强),其最多可以使用4个PCIe通道。在PCIe4.0上最高可达8GB/s。 云存储 云存储提供了一系列可配置的性能。也就是说,虚拟机的存储在数量和速度上都能根据用户需要进行动态分 配。建议用户在延迟太高时(例如,在训练期间存在许多小记录时)增加IOPs的配置数。 12.4.40 码力 | 797 页 | 29.45 MB | 1 年前3
QCon2018北京-基于深度学习的视频结构化实践-姚唐仁《基于深度学习的视频结构化实践》 七牛云 AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 • 国内领先的云计算厂商 关于七牛云 智能多媒体服务 数据洞察 机器学习 内容生产者 内容消费者 内容采集 (上传加速) 内容分发 海量存储 海量富媒体数据的业务布局 视觉智能 Vision Intelligence 数据智能 Data Intelligence 海量存储 ���� ���� ���� 弹性计算 ��� ��� 智能网络 API �� ���� �� ��(��)� 视频描述-标签 视频处理 Frames Flows Audio …….� Others 节省了80%的人力成本,缩短了50%的实现周期 七牛云深度学习平台 1 ��P ���� 2 ���� 3 ����� 4 ���� ����� 5 1 ��P IF�� 6 �� ��N� 7 ���� 8 2 ������0 码力 | 39 页 | 38.01 MB | 1 年前3
复杂环境下的视觉同时定位与地图构建计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 后台线程 • 进行局部或全局优化,减少误差累积 • 场景回路检测 输出 • 设备实时位姿 • 三维点云 RGB图 深度图 IMU测量值 优化以减少误差累积 回路检测 小范围内定位精度较高 • 无需预先布置场景 基本原理:多视图几何 投影函数 主要模块 • 特征跟踪 • 获得一堆特征点轨迹 • 相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? • 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 我们课题组的工作 • 面向大尺度场景的运动恢复结构0 码力 | 60 页 | 4.61 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 Hashing 场景 内存节省 场景1 88% 场景2 64% 下⼀步的 解空间 未来⽅向—现有推荐架构的问题,算法⼯程协同的解法 � 更基础的复杂模型,场景的快速适应 � 多场景建模 � 端云⼀体的协同 推荐技术 [KDD2020] DCAF: A Dynamic Computation Allocation Framework for Online Serving System0 码力 | 22 页 | 6.76 MB | 1 年前3
共 17 条
- 1
- 2













