阿里云上深度学习建模实践-程孟力阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景 OCR识别 人脸核身 智能风控 自动驾驶 语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 机器学习框架(PAI-TensorFlow/PAI-PyTorch/Caffe /Alink/…) 计算引擎(MaxCompute / EMR / Flink) 基础硬件(CPU/GPU/FPGA/NPU) 阿里云容器服务(ACK) • 200+组件 • 数十个场景化模版 • 所见即所得 交互式建模(DSW) • JupyterLab、WebIDE • 多框架兼容 • 可视化+tensorboard0 码力 | 40 页 | 8.51 MB | 1 年前3
AI大模型千问 qwen 中文文档5-7B-Chat", torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", ) 请 注 意, 原 Qwen 仓 库 中 的 旧 方 法 chat() 现 在 已 被 generate() 方 法 替 代。 这 里 使 用 了 apply_chat_template() 函数将消息转换为模型能够理解的格式。其中的 11.1 SkyPilot 是什么 SkyPilot 是一个可以在任何云上运行 LLM、AI 应用以及批量任务的框架,旨在实现最大程度的成本节省、最 高的 GPU 可用性以及受管理的执行过程。其特性包括: • 通过跨区域和跨云充分利用多个资源池,以获得最佳的 GPU 可用性。 • 把费用降到最低——SkyPilot 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • • 将服务扩展到多个副本上,所有副本通过单一 endpoint 对外提供服务 • 所有内容均保存在您的云账户中(包括您的虚拟机和 bucket) • 完全私密 - 没有其他人能看到您的聊天记录 22 Chapter 1. 文档 Qwen 1.11.2 安装 SkyPilot 我们建议您按照 指示 安装 SkyPilot。以下为您提供了一个使用 pip 进行安装的简单示例: # You can0 码力 | 56 页 | 835.78 KB | 1 年前3
华为云深度学习在文本分类中的实践-李明磊华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容: 买没几天就降价一点都不开心,闪存跑分就五百多点点 --- 外观漂亮音质不错,现在电子产品基本上都是华为的了 --- 汽车不错,省油,性价比高 --- 这个政策好啊,利国利民 --- 85 0.9 0.95 人工标注 系统标注 效果:F1 未标注集合 ???????????? ???????????? 种子语料 机器学习模型 人工标注 15 华为云主动学习平台 16 华为云主动学习平台 17 1 2 4 3 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 18 情感分析 0.00% 20.00% 40.00% 60.00%0 码力 | 23 页 | 1.80 MB | 1 年前3
Keras: 基于 Python 的深度学习库操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足 的示例。由于能够轻松地创建可以提高表现力的新模块,Keras 然后你就可以安装 Keras 本身了。有两种方法安装 Keras: • 使用 PyPI 安装 Keras (推荐): sudo pip install keras 如果你使用 virtualenv 虚拟环境, 你可以避免使用 sudo: pip install keras • 或者:使用 Github 源码安装 Keras: 首先,使用 git 来克隆 Keras: git clone https://github activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # 生成虚拟数据 import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(2, size=(10000 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0们和社区 的快速更新;(5)由一个论坛2作为补充,用于技术细节的互动讨论和回答问题。 这些目标经常是相互冲突的。公式、定理和引用最好用LaTeX来管理和布局。代码最好用Python描述。网页 原生是HTML和JavaScript的。此外,我们希望内容既可以作为可执行代码访问、作为纸质书访问,作为可下 载的PDF访问,也可以作为网站在互联网上访问。目前还没有完全适合这些需求的工具和工作流程,所以我 目标受众 本书面向学生(本科生或研究生)、工程师和研究人员,他们希望扎实掌握深度学习的实用技术。因为我们 从头开始解释每个概念,所以不需要过往的深度学习或机器学习背景。全面解释深度学习的方法需要一些数 学和编程,但我们只假设读者了解一些基础知识,包括线性代数、微积分、概率和非常基础的Python编程。 此外,在附录中,我们提供了本书所涵盖的大多数数学知识的复习。大多数时候,我们会优先考虑直觉和想 那么到底什么是参数呢?参数可以被看作旋钮,旋钮的转动可以调整程序的行为。任一调整参数后的程序被 称为模型(model)。通过操作参数而生成的所有不同程序(输入‐输出映射)的集合称为“模型族”。使用数 据集来选择参数的元程序被称为学习算法(learning algorithm)。 在开始用机器学习算法解决问题之前,我们必须精确地定义问题,确定输入(input)和输出(output)的性 质,0 码力 | 797 页 | 29.45 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒特征向量 AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 错误概率 97% 通过率 6位密码时代 1/100万 错误概率 95% 通过率 6000万张人脸训练 2016 2017 What’s Next? 2018 自我演化的异构人工智能云 云原生的深度学习数据闭环 自进化深度学习系统 高度定制的 图片、特征仓库 深度学习 应用服务 场景相关业务 数据清洗-查询 深度学习训练平台 模型测试与验证 深度学习算法在产品应用中的挑战0 码力 | 23 页 | 9.26 MB | 1 年前3
复杂环境下的视觉同时定位与地图构建浙江大学CAD&CG国家重点实验室 SLAM: 同时定位与地图构建 • 机器人和计算机视觉领域的基本问题 • 在未知环境中定位自身方位并同时构建环境三维地图 • 广泛的应用 • 增强现实、虚拟现实 • 机器人、无人驾驶 SLAM常用的传感器 • 红外传感器:较近距离感应,常用于扫地机器人。 • 激光雷达:单线、多线等。 • 摄像头:单目、双目、多目等。 • 惯性传感器(英文叫 计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 后台线程 • 进行局部或全局优化,减少误差累积 • 场景回路检测 输出 • 设备实时位姿 • 三维点云 RGB图 深度图 IMU测量值 优化以减少误差累积 回路检测 生成 SLAM应用介绍 • 无人车 MobileEye、特斯拉等自动驾驶方案 以廉价的摄像头为主 Google无人车项目Waymo 使用高精度激光雷达构建地图 SLAM应用介绍 • 虚拟/增强现实:Inside-Out方案 目前绝大多数VR头盔都采用 Outside-In的定位方案,需要在环境 中放置一个或多个传感器,活动范 围受限,不支持大范围移动的定位。 基于SLAM技术0 码力 | 60 页 | 4.61 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学 预览版202112 第 1 章 人工智能绪论 2 科。 在机器学习中,有一个通过神经网 自 AlexNet 模型提出后,各种各样的算法模型相继被发表,其中有 VGG 系列、 GoogLeNet 系列、ResNet 系列、DenseNet 系列等。ResNet 系列模型将网络的层数提升至数 百层、甚至上千层,同时保持性能不变甚至更优。它算法思想简单,具有普适性,并且效 果显著,是深度学习最具代表性的模型。 除了有监督学习领域取得了惊人的成果,在无监督学习和强化学习领域也取得了巨大 等。常应用在咨询系统、娱乐系统、智能家居等中。 预览版202112 第 1 章 人工智能绪论 12 1.4.3 强化学习 虚拟游戏 相对于真实环境,虚拟游戏平台既可以训练、测试强化学习算法,又可以避 免无关因素干扰,同时也能将实验代价降到最低。目前常用的虚拟游戏平台有 OpenAI Gym、OpenAI Universe、OpenAI Roboschool、DeepMind OpenSpiel、MuJoCo0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-numpy使用总结NumPy(Numeric Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用, 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/ NumPy是什么? 7 Anaconda里面已经安装过NumPy。 原生的Python安装: · 在cmd中输入 安装之后,我们用导入这个库 > import numpy as np NumPy的安装 > pip install numpy 8 2.NumPy数组(ndarry)对象 reshape(3, 4) # 创建一个3行4列的数组 >data array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) ndarray对维数没有限制。 [ ]从内到外分别为第0轴,第1轴,第2轴,第3轴。 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据 的集合,以 0 下标为开始进行集合中元素的索引。0 码力 | 49 页 | 1.52 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 历史 Pytorch 在 2016 年由 facebook 发布的开源机器学习(深度 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java 模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 torchvison 库中的一些常见 模型库与功能函数,主要包括对象检测模块与模型库、图象数 据增强与预处理模块等。 以上并不是 pytorch 框架中全部模块与功能说明,作者这里只 列出了跟本书内容关联密切必须掌握的一些模块功能,希望读 者可以更好的针对性学习,掌握这些知识。 10 码力 | 13 页 | 5.99 MB | 1 年前3
共 62 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













