积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部中文(简体)(10)英语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    ,I3链接到I1。 (这里根据项集的数量排序成I2、I1、I3) Null l2:1 l1:1 l3:1 ② 再次扫描数据库并检查事务。检查第一个事务并找出其中的项集。计数 最大的项集在顶部,计数较低的下一个项集,以此类推。这意味着树的 分支是由事务项集按计数降序构造的。 35 3.FP-Growth算法 构建FP树 1.考虑到根节点为空(null)。 2. T1:I1、I2 中, {I2,I1,I3,I4:1},{I2,I3,I4:1}。因此,将I4作为后缀, 前缀路径将是{I2,I1,I3:1},{I2,I3:1}。这形成了条件 模式基。 3.将条件模式基视为事务数据库,构造FP树。这 将包含{I2:2,I3:2},不考虑I1,因为它不满足最小支 持计数。 Null l4:1 l2:5 l1:4 l3:1 l5:1 l3:3 l4:1 l5:1 I1,I2.I5 2 I2,I4 3 I2,I3 4 I1,I2,I4 5 I1,I3 6 I2,I3 7 I1,I3 8 I1,I2,I3,I5 9 I1,I2,I3 事务数据库的建立 扫描事务数据库得到频繁项目集F I1 I2 I3 I4 I5 6 7 6 2 2 定义minsup=20%,即最小支持度为2,重新排列F I2 I1 I3 I4 I5 7 6 6 2 2
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 搜狗深度学习技术在广告推荐领域的应用

    深度学习在搜狗搜索广告的一些应用 03 基于多模型融合的CTR预估 04 若干思考 搜索广告背景知识 信息需求 用户查询 查询理解 广告召回 点击率预估 排序计价 结果展示 点击及后续行为 广告库 日志收集 展示日志 点击日志 深度学习在搜狗搜索广告的一些应用 无需分词:基于字符粒度表达的问答系统设计 L.X Meng, Y.Li, M.Y Liu, P Shu. Skipping Word: A Word2Vec、CSR、LSTM CTR预估 广告排序、特征挖掘 DNN、MxNet、TensorFlow 基于多模型融合的CTR预估 CTR预估流程 原始数据 领域特征 模型训练 查询日志 点击日志 查询特征 广告特征 匹配特征 线性模型 非线性模型 Data Feature Model 线上Server CTR预估 Rank Online 特征抽取 CTR预估涉及技术
    0 码力 | 22 页 | 1.60 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 • 集群资源的管理(目前支持CPU、内存,需要扩展GPU 资源管理)� • 作业的统⼀管理、状态跟踪� • 资源组(Schedule 基本目标:� TensorFlow on Yarn设计 • 支持GPU亲和性调度(提⾼通信效率)� • Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 Container当前状态� 训练中保存的中间模型� 查看work、ps日志� TensorFlow on Yarn设计 TensorFlow作业Tensorboard页面:� TensorFlow on Yarn设计 TensorFlow作业history页面:� Event log上传到了HDFS� 查看历史日志� TensorFlow on Yarn技术细节揭秘 实现Yarn
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    基于词语聚类的矢量化模型 12 • 把搜索词和商品文档各自作为整体看待,直接学习训练各自的矢量值 • 通过分析用户每次访问的行为顺序, 构建有“搜索词”和“商品文档”组成的句子 • 训练集是采用苏宁易购的用户搜索日志作为来源。在经过数据清理之后,按照搜索的 时间顺序,结合商品的点击,商品放入购物车,商品的购买这些用户行为,而建立的 矢量化训练数据 小米手机4c, 小米手机4s, 142074410 美的冰箱 270 美的冰箱645, 美的冰箱 330, 132268985, 美的 2155, 美的冰箱, 美的冰箱 550 基于用户反馈的矢量化 13 基于用户反馈的矢量化模型 用户搜索日志 用户点击日志 用户购物车 日志 用户购买日志 Word2vec模型 计算距离最近 的矢量 产品类别过滤 产品频率过滤 矢量转换回商 品 14 原型评测结果 矢量化搜索引擎与易购传统引擎搜索效果对比 (2016-07-25测试结果)
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    上的一轮迭代。请注意,与 initial_epoch 一起,epochs 被理解为「最终轮次」。模型并不是训练了 epochs 轮,而 是到第 epochs 轮停止训练。 • verbose: 0, 1 或 2。日志显示模式。0 = 安静模式, 1 = 进度条, 2 = 每轮一行。 • callbacks: 一系列的 keras.callbacks.Callback 实例。一系列可以在训练时使用的回调 函数。详见 数组。如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可 以是 None(默认)。 • batch_size: 整数。每次梯度更新的样本数。如果未指定,默认为 32。 • verbose: 日志显示模式,0 或 1。 • sample_weight: 样本权重,Numpy 数组。 • steps: 整数或 None。声明评估结束之前的总步数(批次样本)。默认值 None。 模型 44 steps=None) 为输入样本生成输出预测。 输入样本逐批处理。 参数 • x: 输入数据,Numpy 数组。 • batch_size: 整数。如未指定,默认为 32。 • verbose: 日志显示模式,0 或 1。 • steps: 声明预测结束之前的总步数(批次样本)。默认值 None。 返回 预测的 Numpy 数组。 4.2.3.5 train_on_batch train_on_batch(self
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    Task Metrics输出 3 在线机器学习-工作流 互动行为日志 数据处理 点击行为日志 阅读行为日志 曝光行为日志 数据过滤 样本拼接 定时轮询 Kafka Hdfs 样本输出 3 在线机器学习-实时样本生成 • 多流拼接 • 曝光,互动,点击,真实阅读等多种数据流接入并多流拼接 • 如何解决日志延时问题 • 延迟等待机制,先到先走 • 定时轮寻,最长N分钟等待
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    MaxCompute Datahub 离线特征 样本构造 实时特征 Flink 训练数据 推荐日志 模型发布 在线流程 离线流程 智能推荐解决方案 > PAI-REC 推荐引擎 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] 实时采集后端日志 PAI-REC 配置中心 AB实验 实验工具 拉取配置 监控报警 Prometheus Prometheus Grafana 读取metric 消息队列(datahub/kafka) PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Pipeline2
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    1 Val Job 2 WK Job 2 WK Job 3 监控/启停 任务调度/资源管理 监控上报 cephfs存储集 群 本地文件系统 数据 模型/日志 client 管理数据 提取模型、 查看日志 提交/管理任务 用户 docker.oa.co m 自动拉取镜像 Redis 冷数据 热任务/监控数据/集群信息 • 任务监控与自动重启 • 分布式多机训练,不可避免遇到由于硬件/网
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《深度学习在微博信息流排序的应用》-刘博

    用户特征 关键词 类型属性 topic 内容标签 内容质量 内容特征 组合特征 标签匹配度 用户互动率 协同特征 实时互动率 app互动率 微博内容 关注数据 用户信息 视觉标签 打码日志 社交关系 用户特征 发博流 互动流 曝光流 模型服务 模型训练 模型优化 模型评估 模型预测 CTR预估 排序策略 权值映射 业务排序 其他策略 特征工程 特征存储 特征查询
    0 码力 | 21 页 | 2.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    实现ChatGPT的数据飞轮效应(用更多数据可以训练出更好的模型, 吸引更多用户,从而产生更多用户数据用于训练,形成良性循环)。 ✓ 研究发现,每增加参数都带来了文本合成和/或下游NLP任务的改进, 有证据表明,日志丢失与许多下游任务密切相关,随着规模的增长,日 志丢失呈现平稳的改善趋势。 资料来源:《On the Opportunities and Risks of Foundation Models 》论文
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
机器学习课程温州大学12关联规则搜狗深度技术广告推荐领域应用TensorFlowonYarn遇上数据电子商务电子商务Keras基于Python微博在线实践黄波阿里云上建模程孟力国富图像审核QCon北京2018信息信息流排序刘博自然语言自然语言处理嵌入
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩