积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(53)机器学习(53)

语言

全部中文(简体)(52)英语(1)

格式

全部PDF文档 PDF(53)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 53 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 4 个部份:第 1~3 章为第 1 部分,主要介绍人工智能的初 步认知,并引出相关问题;第 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 7 参考文献 预览版202112 人工智能绪论 我们需要的是一台可以从经验中学习的机器。 −阿兰·图灵 1.1 人工智能 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及 极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给 机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 发 明 专 利 , 十 五 篇 国 际 学 术 论 文 , 译 著 《 智 能 W e b 算 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高 • 常需要分类算法融合提升效果 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 把原来涉及到序列标注任务和分类任务的关系抽取完全变成了一个序 列标注问题。然后通过一个端对端的神经网络模型直接得到关系实体 三元组。 知识图谱关系抽取:基于联合标注 将抽取问题转换成标注任务 训练一个端到端标注模型来抽取关系 输入句子 标注框架 抽取结果 端到端标注模型 知识图谱关系抽取:基于联合标注 三类标签 • 单词在实体中的位置{B(begin),I(inside),E(end)
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java Python/C++/Java 主流编程语言, 目前已经支持 Linux、Windows、MacOS 等主流的操作系统、 同时全面支持 Android 与 iOS 移动端部署。 在版本发布管理方面,Pytorch 分为三种不同的版本分别是稳 定版本 (Stable Release)、Beta 版本、原型版本(Prototype)。 其中稳定版本长期支持维护没有明显的性能问题与缺陷,理论 上支持向后兼容的版本;Beta 智能赋能各 行各业,Pytorch 框架必然会更加得到开发者的青睐,成为人 工智能 (AI) 开发者必备技能之一。同时 Pytorch 也会在部署跟 推理方面会更加完善与方便,加强支持移动端,嵌入式端等应 用场景,相信掌握 Pytorch 框架的开发技术人才也会得到丰厚 回报。 1.2 环境搭建 Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK,
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 中国最大的互联网安全公司 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取 n 人脸检测占用95%计算资源 n 峰值时会达到1500 QPS SACC2017 检测-人脸检测/人形检测 场景多样、人脸小、位置边缘 本页图片均来自公开摄像头
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09深度学习-目标检测

    variability) 1.目标检测概述 9 类间相似性(inter-class similarity) 1.目标检测概述 10 1.目标检测概述 学术和工业界主要将目标检测算法分成三类: 1.传统的目标检测框架 2.基于深度学习的Two Stages目标检测框架 (准确度有优势) 3.基于深度学习的One Stage目标检测框架 (速度有优势) 11 1.目标检测概述 修正(常使用R-CNN、Fast R-CNN、Faster R-CNN等算法)。 13 1.目标检测概述 3.基于深度学习的One Stage目标检测框架 (速度有优势) 此类检测算法属于端到端(End-to-End),不需要生成大量候选区域 的阶段,而是将问题转化为回归(Regression)问题处理,使用完整 图像作为输入,直接在图像的多个位置上回归出该位置的目标边框 及所属类别 第一步,训练RPN,该网络用ImageNet预训练的模型初始化,并端到端微调,用于生成region proposal; • 第二步,训练Faster RCNN,由imageNet model初始化,利用第一步的RPN生成的region proposals作为输入数据,训练Fast R-CNN一个单独的检测网络,这时候两个网络还没有共享卷 积层; • 第三步,调优RPN,用第二步的Faster RCNN
    0 码力 | 43 页 | 4.12 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条 10节 中,我们介绍了一类新的模型,它采用 了一种称为注意力机制的技术,最近它们已经开始在自然语言处理中取代循环神经网络。这一部分将 帮助读者快速了解大多数现代深度学习应用背后的基本工具。 • 第三部分讨论可伸缩性、效率和应用程序。首先,在 11节 中,我们讨论了用于训练深度学习模型的几 种常用优化算法。下一章 12节 将探讨影响深度学习代码计算性能的几个关键因素。在 13节 中,我们展 示了深度学习在计算机视觉中的主要应用。在 根据计算机断层扫描(Computed Tomography,CT)肿瘤图像,预测是否为癌症; • 给出一个英语句子,预测正确的法语翻译; • 根据本月的财务报告数据,预测下个月股票的价格; 监督学习的学习过程一般可以分为三大步骤: 1. 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如, 患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    分布式版本ClusterSpec定义:� 带来的问题:� • ⼿动指定机器很繁琐� • 端⼝冲突� • 机器负载不均� TensorFlow使用现状及痛点 • ⼿动分发训练样本� • ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files 启动Tensorboard服务:� TensorFlow on Yarn技术细节揭秘 降低已有tensorflow程序迁移成本:� (1)单机模式 不需要修改代码 (2)分布式模式(最多修改三行代码) cluster = !.train.ClusterSpec(json.loads(os.environ[“TF_CLUSTER_DEF”])) job_name = os.environ[“TF_ROLE”]
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    务中,比如说用这个300维的词嵌入来表示你的单词。这样做的一个好处就是你 可以用更低维度的特征向量代替原来的10000维的one-hot向量,现在你可以用 一个300维更加紧凑的向量。 第三步,当你在你新的任务上训练模型时,在你的命名实体识别任务上,只有少 量的标记数据集上,你可以自己选择要不要继续微调,用新的数据调整词嵌入。 11 2.词嵌入 ?king − ?queen = GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3.Word2Vec (下图左边为CBOW,右边为Skip-Gram) CBOW对小型数据库比较合适,而 习模式将文本属性及内容自动分离,常见的有 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    技术合伙人、算法负责人 • ChatbotsChina发起人 • 微博:@breezedeus • 博客:breezedeus.github.io 目录 • Chatbots简史 • 三个火枪手:三个Bot框架 • IR-Bot、Task-Bot、Chitchat-Bot • 爱因互动所做的事 • 总结 Chatbots简史 1950 • 提出 “图灵 测试” 1966 •ELIZA:MIT 小心你的训练数据 • 如何引入上下文信息 • 如何加入外部信息 • 如何产生个性化答复 总结:三个Bot框架 • IR-Bot(成熟度: ) • 基于检索/排序的流程,历史悠久,技术成熟 • 引入深度学习,计入长效依赖,生成更好的语句表达 • Task-Bot(成熟度: ) • 解决任务型多轮问答 • 深度学习端到端? • Chitchat-Bot(成熟度: ) • 开域聊天 • 深度学习在NLP里的新舞台
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    图像识别技术 01 腾讯优图图像技术能力 SACC2017 内容审核 - 图片鉴黄解决方案 区分图像中的色情、性感和正常内容 DeepEye可给出图片属于色情、性感和正常 的概率,并结合三者概率给出综合分,通过 分数所属区间判断图片性质。 Ø 色情图片:包含露点或不雅行为的图片, 可直接打击; Ø 性感图片:又称疑似图片,不含直接色情 内容但有一定的诱惑性,建议进行人工审 核; 自动扩缩容,最大化资源使用率 • 支持不同计算框架 • 调度与任务松耦合,用户可以灵活定义任务 • 支持配置 docker 镜像,完全自定义运行环 境 • 良好的用户体验 • 完善的客户端工具 • 任务进度微信提醒 SACC2017 proto model graph. pb 深度网络计算图 caffe Tensor Flow 公共计算库 X86 优化 Android Rapidnet : 深度网络应用的解决方案 • 将深度网络SDK生成,分为解析,编译,运行三个阶段 • 一键生成深度学习SDK,一个模型到处应用 加快应用速度 - RapidNet Ncnn : 移动端前向网络开源框 https://github.com/tencent/ncnn • 针对移动端优化版本 • 开源建设, 2.6k+ stars SACC2017 从静到动:结合视频识别能力
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
共 53 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
PyTorch深度学习Qcon北京2018文本智能处理深度学习技术陈运文OpenVINO开发实战系列教程第一一篇第一篇李东亮云端图像模型应用机器课程温州大学09目标检测动手v2TensorFlowonYarn遇上数据12自然语言自然语言嵌入Chatbots对话交互系统分析国富审核
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩