Hadoop 迁移到阿里云MaxCompute 技术方案生成 .......................................................................... 22 6.2.3 MaxCompute 表创建 ................................................................................................. ........................................................ 49 7.1.7 运行 odps_ddl_runner.py 生成 odps 表和分区 .............................................................. 50 7.1.8 运行 hive_udtf_sql_runner compute 映射 ............................................................................ 53 7.2.3 单表/单分区迁移 .............................................................................................0 码力 | 59 页 | 4.33 MB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 1. 用数据库内置的 MapReduce 通过外部表进行访问 在图 1 中,我们利用 Oracle Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop Map-Reduce 作业。该表函数与映射器 (mapper) 之 间使用0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据时代的Intel之Hadoop留今后对其定义的权利,对亍因今后对其迚行修改所产生的冲突戒丌兼容性概丌负责。此处提供的信息可随时改变而毋需通知。请勿使用本信息来对某个设计做出最终决定。 文中所述产品可能包含设计缺陷戒错误,已在勘误表中注明,这可能会使产品偏离已经发布的技术规范。英特尔提供最新的勘误表备索。 订购产品前,请联系您当地的英特尔销售办事处戒分销商,了解最新技术规范。 如欲获得本文戒其它英特尔文献中提及的带订单编号的文档副本,可致电 1-800-5 测试用例和性能 向HBase集群插入1KB大小的记录 每台服务器平均每秒插入1万条记录,峰值在2万条记录 每台服务器,从磁盘扫描数据,每秒完成400个扫描。 一次扫描从HBase表中获得单个用户一个月内的所有记录(平均100条) 0 0.2 0.4 0.6 0.8 1 ren 0 0 10000 20000 30000 40000 50000 60000 大对象的高效存储(IDH2.3) 在交通、金融等领域,要求存储大量的图片 • 将图片存入HBase,引起大量的compaction • 将图片存入HDFS,管理使用麻烦 IDH引入了表外存储以解决大对象的高效存储问题 • 类似Oracle的BLOB存储 • 对用户透明 • 2X以上的写入性能,还有迚一步提升的空间 • 2X的随机访问性能 • 1.3X的Scan性能0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 概述营销活动分析、客户流失建模、欺诈检测、风险建模以及其他多种 分析。许多得到广泛使用的系统,例如 Apache Hive,也将 HDFS 用于数据存储(见图 1-7)。 获取实时数据 实时插入 填充 Hive 表 行数据 HADOOP 填充器 Hadoop 生态系统 HDFS 中的 数据文件 图 1-7 Hadoop 大数据解决方案 14 Oracle 公司为其旗舰数据库引擎和 Oracle 数据库中的 SQL 进行数据选择所发起。 用户可将数据加载到数据库,或者通过外部表使用 Oracle SQL 在 Hadoop 中就地查询数据。Oracle SQL Connector for HDFS 能够查询 或者加载数据到文本文件或者基于文本文件的 Hive 表中。分区也可 以在从 Hive 分区表中查询或加载时被删减。 另一种 Oracle 解决方案 Oracle Loader SQL 查询 在 HDFS 上就地访问和分析数据 查询和连接 HDFS 数据库中的常驻 数据 在需要时使用 SQL 加载到数据库中 自动负载均衡,从而最大限度地提高 性能 外部表 使用外部表机制 并行访问或加载 到数据库中 ORACLE 客户端 图 1-8 日志文件 更多… 文本 压缩文件 序列文件 并行负载,针对 Hadoop 做优化 自动负载均衡0 码力 | 17 页 | 583.90 KB | 1 年前3
這些年,我們一起追的Hadoop/ 74 由創建 Lucene 與 Nutch 的 Doug Cutting 主導開發 Lucene 是個全文檢索的程式 庫,Nutch 是個搜尋引擎 依循著 Google 2003/2004 年發表的論文來開發 2006 年從 Nutch 獨立出來, 稱為 Hadoop Hadoop 是 Doug 兒子黃色大象 玩偶的名稱 2008-01 Apache 的 Top- Level Project 2009-09 Interactive SQL & Dashboard 51 / 74 Impala - Real-Time Queries in Hadoop Cloudera 主導,做了兩年才在 2012 年正式發表 支援 HDFS/HBase 的 Distributed Parallel SQL Query Engine in Real Time 吸收 Google F1 Fault-Tolerant Distributed noting that none of this really matters for designing massive data systems. 53 / 74 Google 2010 年發表了 Dremel 研究論文,是一個具有 Interactive Analysis of Web- Scale Datasets 能力的系統 Apache Drill 是 Dremel 的 Open Source0 码力 | 74 页 | 45.76 MB | 1 年前3
大数据集成与Hadoop - IBM• 释放RDBMS服务器上的容量 • 处理异构数据源(未存储到 数据库中) • ETL服务器可以较快地执行某 些流程 缺点 • ETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 虽然有很多方法可以应对数据并置支持缺乏的问题,但费用往 往十分昂贵-通常需要额外的应用程序处理和/或重建工作。 另外,HDFS文件不可更改(只读),处理HDFS文件类似于运 行全表扫描,往往需要处理全部数据。对于像联接两个超大 表这样的操作应该发出危险信号,因为没有将数据并置到同一 Hadoop节点。 MapReduce V1是一个并行处理框架,并非用于高性能处理 大型ETL工作负载。默认情况下,可在映射之间重新划分或重新0 码力 | 16 页 | 1.23 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等… – 支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory tall arrays0 码力 | 17 页 | 1.64 MB | 1 年前3
Hadoop开发指南Thu Nov 24 16:08:12 CST 2016 in 2044 milliseconds The filesystem under path '/' is HEALTHY 上述HEALTHY表⽰当前HDFS⽂件系统正常,⽆坏块或者数据丢失 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 12/120 码力 | 12 页 | 135.94 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数据库。 8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张 数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开 发专门的0 码力 | 35 页 | 1.70 MB | 1 年前3
共 9 条
- 1













