Hadoop 迁移到阿里云MaxCompute 技术方案Alibaba Cloud MaxCompute 解决方案 6 1 概要 Hadoop 在企业构建第一代大数据平台中成为主流的技术框架,但是随着企业信息化的高 速发展,在数字化、智能化的转型过程中,Hadoop 越来越复杂的技术架构和运维成本、平台 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来越多的企业客 Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map,struct) * 支持 Java、Python 语言的 UDF/UDAF/UDTF Hadoop 的数据湖/数据仓库业务负载 根据 MaxCompute 产品的定位和特性,您可以将基于 Hadoop 为核心的数据湖、数据仓库及 周边配套工具(数据集成、数据开发、作业调度、数据治理等)业务负载迁移至 MaxCompute 及 Dataworks 的云原生大数据平台解决方案。 工作负载 Hadoop 开源生态 MaxCompute 产品组件/MaxCompute 生态工0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 概述是一个商用(几乎没有额外成本)的 解决方案,因此 HDP 使得你能够将其部署到云端或者自己的数据 中心。 HDP 为你提供数据平台基础以供搭建自己的 Hadoop 基础设 施,这包括一长串商业智能(BI)及其他相关供应商的列表。平台的 设计目标是支持处理多种来源及格式的数据,并且允许设计自定义 解决方案。资源列表过大,以至于无法在这里展示,强烈推荐直接 从供应商处获取此信息。选择像 HDP 资源上使 用 Hadoop 的大门。 应用* 源 *请向供应商确认。资源可能会有所不同。 HADOOP 数据访问 YARN 数据管理 开发和数据工具* 数据系统* 治理与集成 安全操作 操作工具* 基础设施* 图 1-4 HDP 被视为一个生态系统,因为它创造了一个数据社区,将 第 1 章 Hadoop 概述 11 Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(生产调优手 册) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 尚硅谷大数据技术之 Hadoop(生产调优手册) ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 3579 Jps [atguigu@hadoop102 ~]$ jmap -heap 2611 Heap Configuration: MaxHeapSize 尚硅谷大数据技术之 Hadoop(生产调优手册) ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.2 NameNode 心跳并发配置 1)hdfs-site.xml The number of Namenode RPC server threads0 码力 | 41 页 | 2.32 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(入门) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 官网地址:http://hadoop.apache.org 下载地址:https://hadoop.apache.org/releases.html 2)Cloudera0 码力 | 35 页 | 1.70 MB | 1 年前3
大数据时代的Intel之HadoopIntel的角色 • 面向大数据应用,在计算、存储和网络方面提供更快更为 高效的架构级别的优化方案 • 持续投入大数据应用开发,促迚软件系统和服务的丌断优 化和创新 • 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel Hadoop商业发行版 优化的大数据处理软件栈 稳定的企业级hadoop发行版 利用硬件新技术迚行优化 数据库复制和备仹功能, 等等。 提供底层 Hadoop 性能优化算法和稳定性增强 •基亍 Hadoop 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更均衡,系统安装程序计算得出的优化参数配置,适合大多数 应用情冴,不硬件技术相结合,提高平台性能 提供企业必须的管理和监控功能 •提供独有的基亍浏览器的集群安装和管理界面,解决开源版本管理困难的问题,提供网页、邮件方式的系统异常报警 (ADR) • Intel® QuickData Technology Direct Memory Access Intel® Xeon®助力大数据计算 Intel® Xeon® =智能数据中心的“核 心” 10GbE全面提升系统吞吐,价格也可接受 4X Improvement Performance comparison using best submitted/published0 码力 | 36 页 | 2.50 MB | 1 年前3
大数据集成与Hadoop - IBM分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 H 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用 Apache Hadoop 抽取、转换和加载大数据”1 有效的大数据集成解决方案可实现简便性、高速度、可扩展 性、功能和治理,从Hadoop沼泽中生成可使用的数据。没有 有效的集成,势必形成“垃圾进垃圾出”的情况-这不是出色 的受信任数据使用方法,更谈不上准确完整的洞察或转型 成果。 IBM软件 3 随 将大数据集成处理推向数据,而不是将数据推向处理:指定 可在RDBMS、Hadoop和ETL网格中执行的适当流程。 2. 避免手动编码:手动编码费用昂贵,而且无法有效适应快速 频繁的调整。另外,手动编码不支持自动收集对数据治理至关 重要的设计和操作元数据。 3. 不要为RDBMS、Hadoop和ETL网格创建单独的集成开 发环境:这种做法没有任何实际意义,而且支持费用非常昂 贵。您应该能够构建一次作业,然后即可在三个环境中的任意0 码力 | 16 页 | 1.23 MB | 1 年前3
共 6 条
- 1













