Hadoop 迁移到阿里云MaxCompute 技术方案MaxCompute 解决方案 11 2.2.1 MaxComptue 的逻辑架构 2.2.2 MaxCompute 产品特性 MaxCompute 提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建 好了 MaxCompute 计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产 品开箱即用。 功能 MaxCompute MaxCompute 支持大规模计算存储,适用于 TB 以上规 模的存储及计算需求,最大可达 EB 级别。同一个 MaxCompute 项目支持企业从创业团队发展到独角兽的 数据规模需求; 数据分布式存储,多副本冗余,数据存储对外仅开放表的 操作接口,不提供文件系统访问接口 自研数据存储结构,表数据列式存储,默认高度压缩,后 D k n e P y l w s o u ) ( ( f I w 据映射为二维表 支持 Partition、Bucket 的分区、分桶存储 更底层不是 HDFS,是阿里自研的盘古文件系统,但可借 助 HDFS 理解对应的表之下文件的体系结构、任务并发 机制 使用时,存储与计算解耦,不需要仅仅为了存储扩大不必 要的计算资源 SQL MaxCompute SQL TPC-DS 100% 支持,同时语法高度兼容 Hive,有 Hive 背0 码力 | 59 页 | 4.33 MB | 1 年前3
 Hadoop 概述型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 的优势。显然当集成时,你必须根据现有的系统环境,成为自己的 SME(Subject Matter Expert,领域专家)。 这些 Hadoop 的连接器将有可能适用于环境中系统的最新版本。 如果想与 Hadoop 一起使用的系统不是应用程序或数据库引擎的最 新版本,那么你需要将升级的因素考虑在内,以便使用增强版完整 功能。我们建议全面检查你的系统需求,以避免沮丧和失望。Hadoop 生态系统会将所有新技术带入到你的系统中。 查询 在 HDFS 上就地访问和分析数据 查询和连接 HDFS 数据库中的常驻 数据 在需要时使用 SQL 加载到数据库中 自动负载均衡,从而最大限度地提高 性能 外部表 使用外部表机制 并行访问或加载 到数据库中 ORACLE 客户端 图 1-8 日志文件 更多… 文本 压缩文件 序列文件 并行负载,针对 Hadoop 做优化 自动负载均衡 在0 码力 | 17 页 | 583.90 KB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(生产调优手 册) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G int(20*math.log(3)) 21 >>> quit() 1.3 开启回收站配置 开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、 备份等作用。 1)回收站工作机制 尚硅谷大数据技术之 Hadoop(生产调优手册) ——————————————————————————————————————— 更多 Java –大数据 3)测试结果分析:为什么读取文件速度大于网络带宽?由于目前只有三台服务器,且有三 个副本,数据读取就近原则,相当于都是读取的本地磁盘数据,没有走网络。 第 3 章 HDFS—多目录 3.1 NameNode 多目录配置 1)NameNode 的本地目录可以配置成多个,且每个目录存放内容相同,增加了可靠性 2)具体配置如下 (1)在 hdfs-site.xml 文件中添加如下内容0 码力 | 41 页 | 2.32 MB | 1 年前3
 大数据集成与Hadoop - IBM并实现应用程序横向扩展以执行大数据集成,但这种说法显 然不真实。 没有非共享、大规模可扩展ETL引擎(如InfoSphere DataStage),企业势必会遇到功能和性能限制。越来越 多的企业意识到,不可扩展的ETL工具与MapReduce pushdown之争无法在Hadoop中提供所需的性能水平。 因此他们争相与IBM合作解决这个问题,因为IBM大数据集 成解决方案以其独有的方式支持大数据集成的大规模数据可 Hadoop 最佳实践2:整个企业采用一个数据集成和治理平台 过度依赖向RDBMS推送ETL(由于缺乏可扩展数据集成软 件工具)会妨碍很多企业替换SQL脚本手动编码,更不要说 在企业中建立有效的数据治理机制。然而,他们意识到将大 型ETL工作负载从RDBMS迁移至Hadoop将会节约巨额成 本。尽管如此,从RDBMS中的ETL手动编码环境迁移至ETL 和Hadoop的新手动编码环境只会使高昂的成本和冗长的供 MapReduce在处理大型数据集成工作负载方面具有多 种已知的性能限制,因为其目的在于牺牲高性能处理来 支持细粒度容错。 最佳实践4:在企业间实施世界级数据治理 绝大部分大型企业发现,在企业中建立数据治理机制即便是 可行的,也会十分困难。造成这种局面的原因很多。例如,企 业用户使用自己熟悉的业务术语来管理数据。时至今日,仍未 出台任何机制来定义、控制和管理此类业务术语并将其与IT 资产联系起来。0 码力 | 16 页 | 1.23 MB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 Kylin-4.0.2-server-sp2-2000-19050910.Z1 内核版本 4.4.131 hadoop 版本 2.7.7 1.3 Hadoop 软件简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 节点的 Container 中,具体做事情的 Task,同样也运行与某一个 Slave 节点的 Container 中。RM, NM,AM 乃至普通的 Container 之间的通信,都是用 RPC 机制。 2 Hadoop 软件适配 2.1 解压 hadoop 软件 $ tar -xvf hadoop-2.7.7.tar.gz -C /usr/local/ $ cd /usr/local/hadoop-20 码力 | 8 页 | 313.35 KB | 1 年前3
 尚硅谷大数据技术之Hadoop(入门)————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(入门) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解 Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed 临。 9)名字来源于Doug Cutting儿子的玩具大象 Hadoop的logo 1.3 Hadoop 三大发行版本(了解) Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks0 码力 | 35 页 | 1.70 MB | 1 年前3
 這些年,我們一起追的HadoopEE 領域有十多 年的講師教學經驗,熟悉 SOAP/RESTful Services、Design Patterns、EJB/JPA 等 Java EE 規 格,Struts/Spring/Hibernate 等 Open Source Framework,與 JBoss AS、 GlassFish 等 Application Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, Task 給 TT 3. TT 執行 Task 4. TT 向 JT 回報 Hadoop 1.x 架構 - MapReduce (MRv1) 只有一個 JobTracker (Master),可是要管理多個 TaskTracker (Slave)! 10 / 74 Hadoop 1.x 架構與限制 比較基本的模組: Hadoop HDFS (Storage) Hadoop MapReduce (Computing Namespace,沒辦法分開管控 /sales、/accounting、... 只能執行 MapReduce Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task 有這麼 多? 11 / 74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing Iterative0 码力 | 74 页 | 45.76 MB | 1 年前3
 Hadoop 3.0以及未来Shell脚本的重构 • HDFS • YARN • MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 • 支持更多的应用,包括long running的service 谢谢 Q&A0 码力 | 33 页 | 841.56 KB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 着处理角色。 在第 2 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列 中的数据0 码力 | 21 页 | 1.03 MB | 1 年前3
 Spark 简介以及与 Hadoop 的对比题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的 Lineage 记录的是粗颗粒度的特定数据转换(Transformation) 操作(filter, map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过0 码力 | 3 页 | 172.14 KB | 1 年前3
共 12 条
- 1
 - 2
 













