大数据集成与Hadoop - IBMNegotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。 开 一个常见的要求:全面支持大规模可扩展处理。 某些数据集成操作在RDBMS引擎内外的运行效率较高。同样, 并非所有数据集成操作均适用于Hadoop环境。设计精妙的架 构必须足够灵活,可以充分利用系统中每个环境的优势(参见 图3)。 在ETL网格中运行 在数据库中运行 在Hadoop中运行 图3. 大数据集成需要一种可利用任何环境优势的平衡方法。 优点 • 利用ETL MPP引擎 • 利用商业硬件和存储 • 利用网格整合 ETL服务器可以较快地执行某 些流程 缺点 • ETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 • 利用RDBMS服务器的多余容量 • 数据库可以较快地执行某些 流程 缺点0 码力 | 16 页 | 1.23 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)Combiner 归并排序 归并排序 合并 Combiner为可选流程 压缩 写磁盘 分区1 分区2 分区1 排序 分区2 排序 排序 分区1 排序 分区2 排序 分区1 合并 分区2 合并 分区1 合并 分区2 合并 分区1 归并 分区2 归并 分区1 压缩 分区2 压缩 分区1 输出 分区2 输出 分区1 合并 分区2 合并 combiner 分区 分区 setClass("mapreduce.map.output.compress.codec", SnappyCodec.class,CompressionCodec.class); 3)增加每次Merge合并次数 mapreduce.task.io.sort.factor默认10,可以提高到20 6)mapreduce.map.memory.mb 默认MapTask内存上限1024MB。 可以根据128m数据对应1G内存原则提高该内存。mapreduce.map.sort.spill.percent 0.80 mapreduce.task.io.sort.factor 10 0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案云计算技术的发展和普及,越来越多的企业客户选择数据上云,在云上构建数据仓库。以云数 仓、云计算为核心的企业服务架构成为新一代大数据建站的主流趋势。MaxCompute 作为云数 仓、云计算的核心引擎,承载了越来越多企业客户的数据业务和数据资产,免运维、低成本、高 度安全和稳定性,让客户的资源更加聚焦在业务开发上,加速业务发展。 本文所描述的解决方案主要解决 Hadoop 客户如何快速、平滑的迁移到 根据模板生成 DataWorks 项目描述文档,打包为:dataworks_project.tgz 上传到 Dataworks。【注意】:一期仅支持:1)打包文件手动上传;2)支持 OOIZE 调度引擎的配 置模板和 Dataworks 工作流配置模板。 5. 上传完成后,Dataworks 服务会根据 ODPS DDL 批量生成 MaxCompute 的 table。 6. MaxCompute 的工作流和节 点任务。【注意】:仅支持发布到开发环境,需要客户自己测试验证后,发布到生产环境。 8.1.6.2 创建 Dataworks 标准工作流 1. 参见 6.4.2,如果您使用其他调度引擎,需要在 6.4.2.2 中按照 Dataworks 的标准模板配置 您的工作流节点,如下图: Alibaba Cloud MaxCompute 解决方案 59 2. 配置0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 3.0以及未来1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK0 码力 | 33 页 | 841.56 KB | 1 年前3
Hadoop 概述SME(Subject Matter Expert,领域专家)。 这些 Hadoop 的连接器将有可能适用于环境中系统的最新版本。 如果想与 Hadoop 一起使用的系统不是应用程序或数据库引擎的最 新版本,那么你需要将升级的因素考虑在内,以便使用增强版完整 功能。我们建议全面检查你的系统需求,以避免沮丧和失望。Hadoop 生态系统会将所有新技术带入到你的系统中。 1.4.1 行数据 HADOOP 填充器 Hadoop 生态系统 HDFS 中的 数据文件 图 1-7 Hadoop 大数据解决方案 14 Oracle 公司为其旗舰数据库引擎和 Hadoop 开发了一款软件。 这是一个实用工具的集合,协助集成 Oracle 的服务与 Hadoop Stack。 大数据连接器套件是一个工具集,提供深入分析和发现信息的能力, 并能快速0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。0 码力 | 35 页 | 1.70 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
(Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Core (Batch Processing) 12 MATLAB与Hadoop datastore map.m0 码力 | 17 页 | 1.64 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册NameNode。 1.5 MapReduce 介绍 MapReduce 是一种计算模型,该模型可以将大型数据处理任务分解成很多单 个的、可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce0 码力 | 8 页 | 313.35 KB | 1 年前3
這些年,我們一起追的HadoopHadoop 身上。 3 / 74 前情提要 4 / 74 由創建 Lucene 與 Nutch 的 Doug Cutting 主導開發 Lucene 是個全文檢索的程式 庫,Nutch 是個搜尋引擎 依循著 Google 2003/2004 年發表的論文來開發 2006 年從 Nutch 獨立出來, 稱為 Hadoop Hadoop 是 Doug 兒子黃色大象 玩偶的名稱 2008-01 Apache0 码力 | 74 页 | 45.76 MB | 1 年前3
共 9 条
- 1













