尚硅谷大数据技术之Hadoop(入门)
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4) 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop102 Hadoop103 Hadoop104 计算子任务 计算子任务 计算任务汇总 计算子任务 尚硅谷大数据技术之 Hadoop(入门) 1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大 3)ApplicationMaster(AM):单个任务运行的老大 2)NodeManager(NM):单个节点服务器资源老大 4)Container:容器,相当一台独立的服务器,里面封装了 任务运行所需要的资源,如内存、CPU、磁盘、网络等。 NodeManager Container NodeManager Container0 码力 | 35 页 | 1.70 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
.................................................................................... 18 4.2.3 分析任务兼容性分析及转换........................................................................................... ................................................................ 55 8.1 【场景 1】Hive 数据和 Oozie 工作流任务如何迁移到 MaxCompute 和 Dataworks? ........... 55 Alibaba Cloud MaxCompute 解决方案 5 8.1.1 网络环境检查 ..................................................................... 57 8.1.6 批量迁移 Oozie 工作流和节点任务 ................................................................................... 570 码力 | 59 页 | 4.33 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
mapTask 处理的差值,越小越均衡 2)注意:如果测试过程中,出现异常 (1)可以在 yarn-site.xml 中设置虚拟内存检测为 falseyarn.nodemanager.vmem-check-enabled (2)执行均衡计划 hdfs diskbalancer -execute hadoop103.plan.json (3)查看当前均衡任务的执行情况 hdfs diskbalancer -query hadoop103 (4)取消均衡任务 hdfs diskbalancer -cancel hadoop103.plan.json 第 4 章 HDFS—集群扩容及缩容 4 思考:如果数据不均衡(hadoop105 数据少,其他节点数据多),怎么处理? 4.3 服务器间数据均衡 1)企业经验: 在企业开发中,如果经常在 hadoop102 和 hadoop104 上提交任务,且副本数为 2,由于 尚硅谷大数据技术之 Hadoop(生产调优手册) ———————————————————————————————————————0 码力 | 41 页 | 2.32 MB | 1 年前3Hadoop 概述
Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 在其网站上明确 指出,如果你还在努力学习如何管理 Linux 环境的话,那么 Hadoop 并不是你能够应付的任务。建议在尝试安装 Hadoop 之前,你需要 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 在 Hadoop Common 安装完成后,是时候该研究 Hadoop 析 第 1 章 Hadoop 概述 5 或查询。 如图 1-1 所示,MapReduce 的工作流程就像一个有着大量齿轮 的古老时钟。在移动到下一个之前,每一个齿轮执行一项特定任务。 它展现了数据被切分为更小尺寸以供处理的过渡状态。 主节点 客户端 HDFS 分布式数据存储 YARN 分布式数据处理 从属 NAMENODE 活动 NAMENODE 节点管理器 图 1-1 MapReduce 的功能使得它成为最常用的批处理工具之一。该处 理器的灵活性使其能利用自身的影响力来挑战现有系统。通过将数 据处理的工作负载分为多个并行执行的任务,MapReduce 允许其用 户处理存储于 HDFS 上不限数量的任意类型的数据。因此,MapReduce 让 Hadoop 成为了一款强大工具。 在 Hadoop 最近的发展中,另有一款称为0 码力 | 17 页 | 583.90 KB | 1 年前3银河麒麟服务器操作系统V4 Hadoop 软件适配手册
块信息,同时周期性的将其所有的 block 块信息发 送给 NameNode。 1.5 MapReduce 介绍 MapReduce 是一种计算模型,该模型可以将大型数据处理任务分解成很多单 个的、可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 reduce 过程的话,那么 reduce 过程也是可以不用的。 task: Hadoop 提供了一套基础设计来处理大多数困难的工作以保证任务可以成功 执行,比如 Hadoop 决定如果将提交的 job 分解为多个独立的 map 和 reduce 任务 (task)来执行,它就会对这些 task 进行调度并为其分配合适的资源,决定将某 个 task 分配到集群中哪个位置(如果可能,通常是这个 应用程序时,需要提供 一个用以跟踪和管理这个程序的 ApplicationMaster,它负责向 ResourceManager 申请资源,并要求 NodeManger 启动可以占用一定资源的 任务。由于不同的 ApplicationMaster 被分布到不同的节点上,因此它们之间不会相互影响。 YARN 的基本组成结构,YARN 主要由 ResourceManager、NodeManager、0 码力 | 8 页 | 313.35 KB | 1 年前3大数据集成与Hadoop - IBM
(HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 序。即使应用程序可以对生成的数据切片进行分区和排序, 也无法保证数据切片在HDFS系统中的位置正确。这意味着, 无法在该环境中有效管理数据搭配工作。数据搭配(Data 优化。均衡优化可生成Jaql代码,以便在MapReduce环 境中本机运行它。Jaql自带优化器,该优化器会分析所生成 的代码,并将其优化到map组件和reduce组件中。这样 可自动执行传统的复杂开发任务,并让开发人员不必再为 MapReduce架构而担忧。 InfoSphere DataStage可直接在Hadoop节点上运行, 而不必像一些供应商实施计划要求的那样在单独的配置节 点上运行。在与IBM 添加新数据源或修改现有ETL脚本较为昂贵并且需要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 的逻辑推送到RDBMS。 • 数据质量受到影响。 • 关键任务(如数据剖析)无法实现自动化-在很多情况下 根本无法执行。 • 未实施有效的数据治理(数据管理、数据沿袭、影响分 析),因而响应法规要求变得更加困难且非常昂贵,对 关键业务数据的信心更无从谈起。0 码力 | 16 页 | 1.23 MB | 1 年前3Hadoop 3.0以及未来
GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK 8+ 升级 Classpath隔离0 码力 | 33 页 | 841.56 KB | 1 年前3Hadoop开发指南
注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 ⽣成官⽅terasort input数据集 hadoop jar /home/hadoop/hadoop-examples.jar teragen 100 /tmp/terasort_input 提交任务 hadoop jar /home/hadoop/hadoop-examples.jar terasort /tmp/terasort_input /tmp/terasort_output Hadoop开发指南0 码力 | 12 页 | 135.94 KB | 1 年前3
共 8 条
- 1