积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(30)Kubernetes(30)

语言

全部中文(简体)(23)英语(3)中文(繁体)(2)中文(简体)(2)

格式

全部PDF文档 PDF(28)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 30 个.
  • 全部
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 运维上海2017-机器学习模型训练的Kubernetes实践-袁晓沛

    0 码力 | 39 页 | 5.82 MB | 1 年前
    3
  • pdf文档 第29 期| 2023 年9 月- 技术雷达

    7 众多大语言模型 大语言模型(LLMs)为现今人工智能的许多重要突破奠定了基础。目前的应用多使用类似聊天的界面进行交 互,例如 ChatGPT 或 Google Bard。生态中的主要竞争者(例如 OpenAI 的 ChatGPT,Google Bard,Meta 的 LLaMA 以及亚马逊的 Bedrock 等)在我们的讨论中占据重要地位。更广泛来说,大语言模型可以应用于从 内容 。通过自然语言的抽象层,这些大模型 成为了强大的工具库,被诸多信息工作者广泛使用。我们讨论了大语言模型的各个方面,包括自托管式大语言 模型,相较云托管的大语言模型,它支持更多的定制和管控。随着大语言模型日益复杂,我们正在深思如何在 小型设备上运行大语言模型,特别是在边缘设备和资源受限的环境中。我们还提到有望提高性能的 ReAct 提示 工程,以及利用大语言模型驱动的自主代理开发远超简单的问 答交互的动态应用。我们也提到一些向量数据库 (包括 Pinecone)由于大语言模型而重新流行起来。大语言模型的底层能力,包括更专业化和自行托管的能力, 将继续呈爆发性增长。 远程交付解决方案日臻成熟 尽管远程软件开发团队多年来利用技术克服地理限制,但疫情的影响进一步推动了这一领域的创新,巩固了向 完全远程或混合工作演进的趋势。在本期技术雷达中,我们讨论了远程软件开发实践和工具的成熟,和团队们
    0 码力 | 43 页 | 2.76 MB | 1 年前
    3
  • pdf文档 Kubernetes开源书 - 周立

    的基础架构。 Kubernetes满⾜了在⽣产中运⾏的应⽤程序的⼀些常⻅需求,例如: Co-locating helper processes ,促进组合应⽤程序和保留”⼀个应⽤程序的每个容器“模型 Mounting storage systems Distributing secrets Checking application health Replicating application { "key1" : "value1" , "key2" : "value2" } 我们最终会对Label进⾏索引和反向索引,以便于⾼效的查询、watch、排序、分组等操作。不要使⽤⾮标识的、⼤型的 结构化数据污染Label。对于⾮标识的信息应使⽤⾮标识,特别是⼤型和/或结构化数据来污染Label。 ⾮识别信息应使 ⽤ annotation 记录。 动机 2. K8s⾼级调度特性:http://blog.csdn.net/jettery/article/details/69500150 现在⽤户可在旧调度模型和新的更灵活的调度模型之间选择。没有toleration(容忍度)的Pod根据旧的模型进⾏调度。 但是,对特定Node能够容忍污点(tolerates the taints)的Pod可被调度到该Node。 请注意,由于延迟时间⼩,通常少于
    0 码力 | 135 页 | 21.02 MB | 1 年前
    3
  • pdf文档 Kubernetes平台比較:Red Hat OpenShift、SUSE Rancher及 Canonical Kubernetes

    Kubernetes、OpenShift及Rancher均提供無需停機的自動化升級。 其中Canonical Kubernetes居於領先的部分,就是能夠讓企業對升級流程進行精細 控制。使用者可精確排序及交錯進行各項元件的更新作業,因此能夠完全升級叢集, 同時確保不會影響在叢集執行的工作負載。 2 5. 支援生命週期 有時候企業無法跟上最新的上游Kubernetes版本,未能完全保持最新狀態。為了 Operators(以下簡稱「Charm」)利用模型導向作業(Model- Driven Operations)的概念,協助部署及管理Kubernetes,涵蓋各種不同的雲端供 應商及執行個體。Juju模型可讓低階儲存、運算、網路及軟體元件合理作為單一實 體,並於適當時在全模型套用共同設定。Charm能夠有效隨元件寄送自動化規則, 將第0天至第2天的作業變為可重複及可靠的程式碼。 其他廠商並未採用模型導向作業以隔離模型與平台,而是仰賴範本系統用於多雲部
    0 码力 | 10 页 | 1.26 MB | 1 年前
    3
  • pdf文档 高性能 Kubernetes 元数据存储 KubeBrain 的设计思路和落地效果-许辰

    – Watch(1) Watch 机制本质上是一个消息队列系统 1. 可靠性 - 不重复、不丢失 2. 顺序性 - 保证最终状态的一致性 3. 实时性 - 高性能 一定有一个单点对消息进行排序 采用主从架构 逻辑层 – Watch(2) 一主多从 1. 仅主节点负责写入和事件生成 2. 从节点只读 逻辑层 – Watch(3) • Master 内存中保留最近写入的 事件
    0 码力 | 60 页 | 8.02 MB | 1 年前
    3
  • pdf文档 运维上海2017-Kubernetes与AI相结合架构、落地解析-赵慧智

    的时候 深度学习对于并行化硬件的依赖 - GPU • Core 的多少往往决定真正并行化运算的数量 GPU 硬件使用流程 AI 模型 • AI 模型会决定最终使用资源的多少 • AI 模型的服务性能还与网络相关 • 并不是所有 AI 模型都适合通过 GPU 加速 Kubernetes 介绍 Kubernetes 使用 Kubernetes 部署与企业对接 AI Kubernetes 融合与架构解析 AI 云平台的价值 • 为 AI 工程师提供一体化的研发工作环境 • 为 AI 对于硬件资源需求提供弹性伸缩 • 为 AI 模型在生产环境中部署及运行提供保障 AI 模型实现工具及其框架举例 • 不同的框架和工具都有其优点长处。 AI 工程师工作流程 存储对接 • 存储通常都由云平台 通过SaaS服务提供 • 在 AI 平台中对于存 AI 工具及其研发框架的整合 模型训练资源池管理 • AI 模型训练会耗费巨大的资源并且长时间占用 • 多个用户在模型训练时需要通过队列的方式来解决资源短缺 问题 • 需要对不同用户进行资源池划分 模型管理与发布 • 模型发布: • 模型服务的负载均衡 • 硬件资源的规划 • 模型管理: • 模型的版本 • 模型的类型 研发环境与生产环境隔离
    0 码力 | 77 页 | 14.48 MB | 1 年前
    3
  • pdf文档 云计算白皮书

    深度挖掘云计算产业价值。我国政策指引云计算应用创新,持续推 动云计算与实体经济融合走深。 二是全球云计算市场稳定增长,我国保持快速发展。2022 年, 全球云计算市场规模为 4,910 亿美元,增速 19%,预计在大模型、 算力等需求刺激下,市场仍将保持稳定增长,到 2026 年全球云计算 市场将突破万亿美元。2022 年,我国云计算市场规模达 4,550 亿元, 较 2021 年增长 40.91%。相比于全球 年同比下降 13.5%。虽然受通胀压力和 宏观经济下行的双重影响,2022 年云计算市场增速下降明显,但对 比全球整体经济仅 3.4%的增长,云计算仍然是新技术融合和业态发 展的重要手段。预计在大模型、算力等需求刺激下,市场仍将保持 稳定增长,到 2026 年全球云计算市场将突破万亿美元。 来源:Gartner,2023 年 4 月 图 1 全球云计算市场规模及增速(亿美元) 1《Gartner 84%以上,是全球所有地区中最高的。以印度为例,2022 年其云支 出增长了近 22%,与欧洲地区几乎持平。同时,印度有 91%的基础 云计算白皮书(2023 年) 6 设施决策者已至少使用一种云部署模型,有 46%的应用程序项目已 部署在云上,预计 2023 年这一比例将上涨到 58%。从供给侧来看, 目前,AWS、微软、谷歌等云服务商均有 1/3 以上的可用区部署在 亚太地区。以 AWS
    0 码力 | 47 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Alluxio 助力 Kubernetes, 加速云端深度学习

    Alluxio 助力 Kubernetes, 加速云端深度学习 范斌 Alluxio 创始成员 车漾 阿里云高级技术专家 目录 • 我们是谁 • 问题背景 • Alluxio 助力云原生 AI 模型训练 • 相关资料 • Alluxio 是谁 • Allluxio 与 Kubernetes 结合 • Alluxio 优化实践 我们是谁? 车漾 阿里云高级技术专家 范斌 Alluxio RestNet50 模型训练速度(images/second) 分布式训练/GPU硬件升级加速明显 模拟数据训练时间 108 15.12 4.62 3.39 1 0 20 40 60 80 100 120 P100 (1GPU) P100 (8GPU) P100 (32GPU) V100 (8GPU) V100 (32GPU) RestNet50 模型训练时间(hours) 单机缓存无法满足海量数据加速 9993.6 3189.6 0 2000 4000 6000 8000 10000 12000 Synthetic ESSD云盘 PL2 RestNet50 模型训练速度 (images/second) 云盘 Alluxio - 分布式缓存的领导者 开源项目由李浩源博士(Alluxio公司CEO)在加州大学Berkeley分校 AMPLab就读期间创立
    0 码力 | 22 页 | 11.79 MB | 1 年前
    3
  • pdf文档 Kubernetes 入門

    redis-master 1-42 Kubernetes 入門 1 1.4.9 小結 上述這些元件是 Kubernetes 系統的核心元件,它們共同構成 Kubernetes 系統的框 架和運算模型。透過對它們進行靈活組合,使用者就可快速、方便地對容器叢集進 行配置、建置和管理。 除了以上核心元件,在 Kubernetes 系統中還有許多可供配置的資源物件,例如 LimitRange、R 網路,通常有下列問題需要回答,如圖 2.17 所示。 有哪些開源的元件支援 Kubernetes 的網路模型? 外部如何存取 Kubernetes 的叢集? Kubernetes 的網路元件之間是如何通訊的? Docker 自身的網路模型和限制? Docker 背後的網路基礎是什麼? Kubernetes 的網路模型是什麼? 圖 2.17 Kubernetes 常見問題 在本節將分別回答這些問題, 在本節將分別回答這些問題,然後透過一個具體的試驗,將這些相關的知識串聯在 一起。 2.5.1 Kubernetes 網路模型 Kubernetes 網路模型設計的一個基礎原則是:每個 Pod 都擁有一個獨立的 IP 位址, 而且假設所有 Pod 都在一個可以直接連線的、扁平的網路空間中。所以不管它們是 否運行在同一個 Node(Host 主機)中,都要求它們可以直接透過對方的 IP 進行存 取。設計這個原則的
    0 码力 | 12 页 | 2.00 MB | 1 年前
    3
  • pdf文档 Kubernetes for Edge Computing across Inter-Continental Haier Production Sites

    传统工业应用:SCADA, MES, ERP, SAP, ORACLE • 互联网类应用:顺逛,海尔商 城,巨商会,海尔服务,好空 气,海尔洗衣机,海尔优家, 嗨付,够花 • 应用:统一架构模型,统一服 务总线 • 体系:用户体系,产品体系, 流程体系 • 管理:服务集成,统一管理 应用互联互通 应用形态复杂 • KPI: 峰值CPU利用率不低 于30% • 资源申请:按峰值30%进 才云数据解决方案 Clever 提交多框架(TensorFlow、PyTorch 、MxNet等)的模型训练作业,支 持分布式和 GPU 加速,以及训练过 程的可视化。 模型训练 模型版本管理,模型推理服务的部署 、监控、管理和升级,提供 A/B test 和滚动升级。 模型服务 实现对 GPU 集群资源进行管理,根 据用户作业请求自动分配和回收 GPU 资源。 GPU 集群管理 集群管理 对接存储系统,管理数据集;提供 notebook 交互式代码开发和调试工 具;管理数据预处理批作业。 模型开发 海尔工业互联网 – 才云数据解决方案 海尔工业互联网 – 才云数据解决方案 海尔工业互联网 – 才云数据解决方案 海尔工业互联网 – 才云数据解决方案 边缘计算场景 1. 海尔在全球有许多工厂 2. 工厂里的机器不多 3. 这些机器上跑了一些容器服务 4
    0 码力 | 33 页 | 4.41 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
运维上海2017机器学习模型训练Kubernetes实践袁晓沛292023技术雷达开源周立平台比較RedHatOpenShiftSUSERancherCanonical高性性能高性能数据存储KubeBrain设计思路落地效果许辰AI结合相结合架构解析赵慧智计算白皮皮书白皮书AlluxioOn车漾范斌入門forEdgeComputingacrossInterContinentalHaierProductionSites
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩