腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明
TKE使用eBPF优化 k8s service Jianmingfan 腾讯云 目录 01 Service的现状及问题 优化的方法 02 和业界方法的比较 性能测试 03 04 解决的BUG 未来的工作 05 06 01 Service的现状及问题 什么是k8s Service • 应用通过固定的VIP访问一组pod,应用对Pod ip变化 无感知 • 本质是一个负载均衡器 控制面和数据面算法复杂度都是O(1) • 经历了二十多年的运行,比较稳定成熟 • 支持多种调度算法 优势 IPVS mode 不足之处 • 没有绕过conntrack,由此带来了性能开销 • 在k8s的实际使用中还有一些Bug 02 优化的方法 指导思路 • 用尽量少的cpu指令处理每一个报文 • 不能独占cpu • 兼顾产品的稳定性,功能足够丰富 弯路 map。避开了eBPF map没有timer的问题 • 继承了IPVS丰富的功能,稳定性。例如调度算法丰富。 • 优势 • 完全绕过了conntrack/iptables • 对内核修改更小 04 性能测试 性能测试踩过的坑 设置测试环境 • 配置一样的cluster,性能可能不同。 • 多个CVM分布在同一台物理主机 • 同一个cluster,在不同的时间段,性能可能不同 • cpu 超卖0 码力 | 27 页 | 1.19 MB | 9 月前3绕过conntrack,使用eBPF增强 IPVS优化K8s网络性能
0 码力 | 24 页 | 1.90 MB | 1 年前3高性能 Kubernetes 元数据存储 KubeBrain 的设计思路和落地效果-许辰
KubeBrain 字节跳动高性能 K8s 元信息存储 许辰 字节跳动资深研发工程师 许 辰 字节跳动基础架构工程师 本科和硕士毕业于北京大学计算机系 负责大规模 Kubernetes 系统的构建和优化 KubeBrain/ KubeGateway/ KubeZoo 等多个项目的发起人 • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 背景 Kubernetes 性能要求更高 离线场景,Pod 生命周期短、变更频率高 如何扩展 Kubernetes 集群 单个集群规模垂直扩展 多个集群横向扩展 降低运维管理成本 减少资源碎片 提高资源利用率 Kubernetes 的架构特点 中心化架构 所有组件通过 apisever 交互 随着规模增大存储系统成为瓶颈 etcd 存在性能问题 apiserver K8s 各组件 apiserver 元信息存储 etcd etcd 存在的问题 自研元信息存储 调优 etcd 参数 按照对象拆分 etcd 设计新的元信息存储 … 如何解决存储瓶颈? KubeBrain 1. 大脑 2. 谐音科比 Kobe Bryant • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 K8s 元信息存储的需求 (1) 0 码力 | 60 页 | 8.02 MB | 1 年前3运维上海2017-Kubernetes 在大规模场景下的service性能优化实战 - 杜军
0 码力 | 38 页 | 3.39 MB | 1 年前3Kubernetes全栈容器技术剖析
分布式 数据库 DDM 应用编排引擎 AOS App/PaaS/IaaS 资源一键式创建 应用运维 AOM 应用性能管理 APM 应用拓扑 调用链 SLA指标 日志关联分析 异常预警 故障回溯 软件开发服 务 DevCloud 云性能测试 CPTS PaaS IaaS 开发测试 统一编排 自动化部署、微服务注册发现与治理、中间件运行环境 智能运维 开放网关APIG 支持原生API调用和命令行操作 增强的商用化特性 • 通过自动化配置、构建、部署提升业务上线效率 • 通过跨可用区高可用和控制面HA提升业务可靠性 • 通过物理共享集群提供敏捷可靠的容器适应业务多样性 高性能基础设施 • 支持多种异构IaaS:虚拟机、物理机、ARM服务器 • 支持多种存储:云硬盘、对象存储、文件存储 • 对接公私网络:虚拟私有网络、EIP公网 容器引擎CCE:基于开源Kuber 第三方模板&镜像部署 K8S Helm/Docker Hub 第三方服务&工具 Kafka/Nginx/APM/Monitor 优势: 9 国内首发裸金属容器:为“高性能场景”量身打造 10 裸金属容器集群VS虚拟机容器集群 的性能对比 29880 29791 29022 15301 14706 14241 0 5000 10000 15000 20000 25000 300000 码力 | 26 页 | 3.29 MB | 1 年前3第29 期| 2023 年9 月- 技术雷达
Fowler 早在 2003 年就撰写了有关此主题的文章,但问题并没有消失。在 这期雷达中,我们讨论了许多现代工具和技术,它们采用更加细致入微的方法来衡量软件的创造过程,但这仍 然不够。幸运的是,业界已经不再使用代码行数作为产出衡量标准。然而,衡量框架 SPACE 中 A(Activity,活 动)的替代方法,例如拉取请求的数量或已解决的问题的数量,仍然不足以成为衡量生产力的良好指标。相反, 行 感知产生影响的条件。新的工具,比如 DX DevEx 360,通过关注开发者体验而不是一些虚假的产出衡量标准解 决了这个问题。然而,许多领导人仍然以模糊的、定性的方式衡量开发者的“生产力”。我们怀疑,这种兴趣的 复苏至少有一部分原因是受到了人工智能辅助软件开发的影响,这不可避免地引发了一个问题:它是否产生了 积极的影响?虽然衡量标准可能变得更加细致入微,但真正的生产力衡量仍然难以捉摸。 本期主题 © 内容生成(文本、图片和视频)、代码生成到总结概述和翻译等各种问题。通过自然语言的抽象层,这些大模型 成为了强大的工具库,被诸多信息工作者广泛使用。我们讨论了大语言模型的各个方面,包括自托管式大语言 模型,相较云托管的大语言模型,它支持更多的定制和管控。随着大语言模型日益复杂,我们正在深思如何在 小型设备上运行大语言模型,特别是在边缘设备和资源受限的环境中。我们还提到有望提高性能的 ReAct 提示 工程,以及利用0 码力 | 43 页 | 2.76 MB | 1 年前3云计算白皮书
头厂商在全球化布局基础上,纷纷调整发展重心,并聚焦热点区域、 热点领域和热点方向,试图在市场上抢得先机。 四是云计算技术不断推陈出新,助力产业高质量发展。随着上 云进程持续加深,企业需求逐步向用云转移,效率、性能、安全等 成为用户关注点,应用现代化、一云多芯、平台工程、云成本优化、 系统稳定性、云原生安全等新技术层出不穷,满足用户多样性场景 需求,助力产业数字化升级。 在此背景下,中国信息通信研究院继《云计算白皮书(2012 为例,其在印度、新加坡、澳大利亚、日韩等地 已建设 40 余个可用区,并计划在东南亚、新西兰等地再新建 12 个 可用区,建成之后亚太地区的可用区占全球比例将超 50%。 服务能力方面,效率和性能成为云服务商竞争的新手段。随着 用云程度持续加深,用户对云服务的要求从能用转变为好用,促使 云服务商更加关注优质云能力的供给。一是更注重敏捷迭代,提升 效率。用户对加速创新,缩短研发周期,提高迭代效率的需求日益 三大生态充分打通,形成完整的技术生态。 二是更注重软硬协同,优化性能。在算力多样化、节点高密化、载 体细粒度化等诉求下,底层硬件在云计算的驱动下也因云而变。2022 年 6 月,阿里云发布 CIPU(Cloud infrastructure Processing Units,云 基础设施处理器),其是一套全新的计算架构体系,能够在通用计算、 大数据、人工智能等场景中展现更好的性能。2022 年 12 月,AWS 云计算白皮书(20230 码力 | 47 页 | 1.22 MB | 1 年前34-2-如何用OpenStack和K8s快速搭建一个容器和虚拟机组合服务的云平台-王昕
Kuryr 不需要多租户隔离,大量使用容器技术,对性能 要求很高 Overlay Kuryr 需要多租户隔离,需要统一管理容器网络和虚拟 机网络,将容器用作轻量级虚拟机,对性能要求 较高 Overlay Calico 需要多租户隔离,对容器网络的管理独立于虚拟 机网络 Overlay Overlay 需要多租户隔离,对容器网络的管理独立于虚拟 机网络,对性能要求不高;快速集成,用于测试 Kubernetes网络方案 Size 问题 Ø 问题 Ø Neutron网络做隧道封装时,占用了包头, 导致上层网络的最大允许MTU比默认要小, 造成虚拟机网络时通时不通 Ø 给Linux虚拟机造成问题 Ø 给Windows虚拟机造成问题 Ø 给虚拟机内的Docker造成问题 Ø 解决方案 Ø 手动改小虚拟机MTU Ø 用CloudInit脚本更改MTU,集成到云平 台中 HTTPS的负载均衡 Ø 问题 Ø如 TCP Ø要把服务器证书配置到HAProxy上 OpenStack里MySQL Galera 集群高可用 Ø问题 Ø异步多主多活情况下会出现数据 不一致 Ø同步多活情况下容易出现死锁 Ø解决方案 Ø改成同步一主两备模式 Kubernetes的PVC绑定问题 Ø问题 ØPVC每次申请PV都会占用所有 PV容量 Ø解决方案 Ø对Kubernetes的PV起初理解偏 差,PVC的设计就是占用整个PV0 码力 | 38 页 | 3.55 MB | 1 年前3DaoCloud Enterprise 5.0 产品介绍
存储 17 参考文档 18 版权 © 2023 DaoCloud 第 3 页 简介 DaoCloud Enterprise 5.0(DCE 5.0)是一款高性能、可扩展的云原生操作系统。 它能够在任何基础设施和任意环境中提供一致、稳定的体验,支持异构云、边 缘云和多云编排。 DCE 5.0 集成了最新的服务网格和微服务技术,能够跟踪每 一个流量的生发始终, 支持多云和混合云的统一集中管理,提供跨云资源检索及跨云的应用部署、发布和运 维能力,实现多云应用高效管控,提供基于集群资源的应用弹性扩缩,实现全局负载 均衡,具备故障恢复能力,有效解决多云应用灾备问题,助力企业构建多云、混合云 的数字基础设施。 涉及的模块:全局管理、容器管理、云原生网络、云原生存储、信创异构 中间件服务 专为有状态应用设计的云原生本地存储能力,满足中间件高 I/O 提供非侵入式流量治理功能,支持无感接入传统微服务、云原生微服务和开源微服务 框架,实现企业现有微服务体系及新旧微服务体系的融合治理,支持微服务从开发、 部署、接入、观测、运维的全生命周期管理,提供高性能云原生微服务网关,保证微 服务应用的连续可用性;引入自主开源的 eBPF 网格加速技术,全面提高流量转发效 率。 涉及的模块:全局管理、容器管理、微服务治理、服务网格、可观测性、应用工作 台、云原生网络、云原生存储0 码力 | 18 页 | 1.32 MB | 1 年前3Kubernetes开源书 - 周立
灵活的应⽤创建和部署 :与VM映像相⽐,容器镜像的创建更加容易、有效率。 持续开发,集成和部署 :通过快速轻松的回滚(由于镜像的不可变性)提供可靠且频繁的容器镜像构建和部署。 Dev和Ops分离问题 :在构建/发布期间⽽⾮部署期间创建镜像,从⽽将应⽤程序与基础架构分离。 开发、测试和⽣产环境⼀致 :在笔记本电脑运⾏与云中⼀样。 云和操作系统可移植性 :可运⾏在Ubuntu、RHEL、CoreOS、内部部署,Google 松耦合,分布式,弹性,解放的微服务:应⽤程序分为更⼩、独⽴的部件,可动态部署和管理——⽽不是⼀个运⾏ 在⼀个⼤型机上的单体。 01-什么是Kubernetes 5 资源隔离:可预测的应⽤程序性能。 资源利⽤:效率⾼,密度⾼。 为什么我需要Kubernetes,它能⼲啥? 最基本的功能:Kubernetes可在物理机或虚拟机集群上调度和运⾏应⽤容器。然⽽,Kubernetes还允许开发⼈员将物理 localhost:32345 卸载 ]# ansible-playbook -i inventory/mycluster/hosts.ini reset.yml 遇到的问题 Calico⽹络插件部署失效。这是Calico 3.2所带来的问题,原因详⻅:https://github.com/kubernetes- incubator/kubespray/issues/3223 解决⽅法:https://github0 码力 | 135 页 | 21.02 MB | 1 年前3
共 42 条
- 1
- 2
- 3
- 4
- 5