Manage Edge Nodes with KubeEdge and Case Study
Manage Edge Nodes with KubeEdge and Case Study Yulin Sun, yulin.sun@huawei.com; Li Xing, Li.xing1@huawei.com; Seattle Cloud Lab, Huawei R&D USA, Bellevue WA Agenda • Edge scenarios/characters • KubeEdge surveillance system Edge Scenario/Characters (vs Data Center) • Similar requirement • Edge/Cloud nodes management • Application management • Inter-service communication • … • Edge special characters • Manage Edge Nodes with KubeEdge • Goal • Manage Edge Nodes together with Nodes in cloud as one Cluster • Address the Edge special characters • Edge nodes and cloud nodes in one VPN • Edge nodes offline0 码力 | 11 页 | 1.42 MB | 1 年前3Cloud Native Contrail Networking Installation and Life Cycle ManagementGuide for Rancher RKE2
• Manage CN2 using standard Kubernetes and third-party tools. • Scale CN2 by adding or removing nodes. • Configure CN2 by using custom resource definitions (CRDs). 2 • Upgrade CN2 software by applying phases, scaling to thousands of nodes. The CN2 implementation consists of a set of Contrail controllers that reside on either Kubernetes control plane nodes or worker nodes depending on distribution. The only one Contrail controller, a typical deployment contains multiple controllers running on multiple nodes. When there are multiple Contrail controllers, the controllers keep in synchronization by using iBGP0 码力 | 72 页 | 1.01 MB | 1 年前3SUSE Rancher MSP Use Cases & Enablement
Product Qty Nodes Rancher Management Server 1 0 Rancher Nodes 18 18 Customer A Cluster 1 Node Rancher Management Server Cluster Customer B Cluster 1 Node Node Control Plane Worker etcd Node Node Node Node Node Node Node Node All-in-one nodes (cp/etcd/worker) Node Node Node Node Node Node Node Node Node Node Node Control Plane Worker etcd MSP Admin Customer B DevOps: End user Customer Cluster All-in-one nodes (cp/etcd/worker) Node Node Node Namespace as a Service Managed Shared Kubernetes Cluster 1 Node Node Node Node 64 GB 16VCPU Worker Master Nodes Node 64 GB 16VCPU0 码力 | 25 页 | 1.44 MB | 1 年前3OpenShift Container Platform 4.9 节点
email address here. 法律通告 法律通告 Copyright © 2023 | You need to change the HOLDER entity in the en-US/Nodes.ent file |. The text of and illustrations in this document are licensed by Red Hat under a Creative 使用 CLI 启用功能集 第 第 8 章 章 网 网络边缘 络边缘上的 上的远 远程 程 WORKER 节 节点 点 8.1. 在网络边缘使用远程 WORKER 节点 8.1.1. 使用远程 worker 节点进行网络隔离 8.1.2. 远程 worker 节点上的电源丢失 8.1.3. 远程 worker 节点策略 313 314 314 316 317 319 320 321 323 324 7 OpenShift Container Platform 4.9 节 节点 点 8 第 1 章 节点概述 1.1. 关于节点 节点是 Kubernetes 集群中的虚拟机或裸机。Worker 节点托管您的应用程序容器,分组为 pod。control plane 节点运行控制 Kubernetes 集群所需的服务。在 OpenShift Container Platform 中,control0 码力 | 374 页 | 3.80 MB | 1 年前3OpenShift Container Platform 4.6 节点
email address here. 法律通告 法律通告 Copyright © 2022 | You need to change the HOLDER entity in the en-US/Nodes.ent file |. The text of and illustrations in this document are licensed by Red Hat under a Creative 使用 CLI 启用功能集 第 第 8 章 章 网 网络边缘 络边缘上的 上的远 远程 程 WORKER 节 节点 点 8.1. 在网络边缘使用远程 WORKER 节点 8.1.1. 使用远程 worker 节点进行网络隔离 8.1.2. 远程 worker 节点上的电源丢失 8.1.3. 远程 worker 节点策略 378 379 379 380 381 383 383 384 384 384 7 OpenShift Container Platform 4.6 节 节点 点 8 第 1 章 节点概述 1.1. 关于节点 节点是 Kubernetes 集群中的虚拟或裸机机器。Worker 节点托管您的应用容器,分组为 pod。control plane 节点运行控制 Kubernetes 集群所需的服务。在 OpenShift Container Platform 中,control0 码力 | 404 页 | 3.60 MB | 1 年前3PyFlink 1.15 Documentation
Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set up the Python • Install Python virtual environments on all the cluster nodes in advance You could install Python virtual environments on all the cluster nodes with PyFlink pre-installed before submitting PyFlink jobs that there is already a Python virtual environment available at /path/to/venv on all the cluster nodes of the standaone cluster. It should be noted that options -pyclientexec and -pyexec are also required0 码力 | 36 页 | 266.77 KB | 1 年前3PyFlink 1.16 Documentation
Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set up the Python • Install Python virtual environments on all the cluster nodes in advance You could install Python virtual environments on all the cluster nodes with PyFlink pre-installed before submitting PyFlink jobs that there is already a Python virtual environment available at /path/to/venv on all the cluster nodes of the standaone cluster. It should be noted that options -pyclientexec and -pyexec are also required0 码力 | 36 页 | 266.80 KB | 1 年前3vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIG
underlying tier of high availability and automated placement options, for both control plane and worker nodes. 2 levels of scheduling and resource management are active. Currently no automatic scheduling scheduler continuously pull pods off the queue, evaluates the pod’s requirements, and assigns it to a worker node. 6 Kubenetes scheduling What does the scheduler do: As pod are created, they are place in queue, evaluates the pod’s requirements, and assigns it to a worker node. Placement Decision Stages: 1. Filter out impossible worker nodes a. Filters are called predicates - extensible in code with a0 码力 | 25 页 | 2.22 MB | 1 年前3VMware SIG Deep Dive into Kubernetes Scheduling
underlying tier of high availability and automated placement options, for both control plane and worker nodes. 2 levels of scheduling and resource management are active. Currently no automatic scheduling scheduler continuously pull pods off the queue, evaluates the pod’s requirements, and assigns it to a worker node. 6 Kubenetes scheduling What does the scheduler do: As pod are created, they are place in queue, evaluates the pod’s requirements, and assigns it to a worker node. Placement Decision Stages: 1. Filter out impossible worker nodes a. Filters are called predicates - extensible in code with0 码力 | 28 页 | 1.85 MB | 1 年前3OpenShift Container Platform 4.14 机器管理
计算节点的系统要求 9.3. 为云准备镜像 9.4. 准备机器以运行 PLAYBOOK 9.5. 准备 RHEL 计算节点 9.6. 将角色权限附加到 AWS 中的 RHEL 实例 9.7. 将 RHEL WORKER 节点标记为拥有或共享 9.8. 在集群中添加 RHEL 计算机器 9.9. 批准机器的证书签名请求 9.10. ANSIBLE HOSTS 文件的必要参数 第 第 10 章 章 在 在 OPENSHIFT 10.2. RHEL 计算节点的系统要求 10.3. 为云准备镜像 10.4. 准备 RHEL 计算节点 10.5. 将角色权限附加到 AWS 中的 RHEL 实例 10.6. 将 RHEL WORKER 节点标记为拥有或共享 10.7. 在集群中添加更多 RHEL 计算机器 10.8. 批准机器的证书签名请求 10.9. ANSIBLE HOSTS 文件的必要参数 第 第 11 章 章 Container Platform 4.14 机器管理 机器管理 6 作为集群管理员,您可以执行以下操作: 将 Red Hat Enterprise Linux(RHEL)计算机器(也称为 worker 机器)添加到 用户置备的基础架构 集群或安装置备的基础架构集群中。 将更多 Red Hat Enterprise Linux(RHEL)计算机器添加到 现有集群中。 第 第 1 章 章0 码力 | 277 页 | 4.37 MB | 1 年前3
共 360 条
- 1
- 2
- 3
- 4
- 5
- 6
- 36