积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(253)VirtualBox(112)Apache Kyuubi(44)Pandas(32)OpenShift(16)机器学习(11)Apache Flink(11)Kubernetes(10)rancher(3)云原生CNCF(3)

语言

全部英语(227)中文(简体)(26)

格式

全部PDF文档 PDF(231)其他文档 其他(22)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 253 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • 机器学习
  • Apache Flink
  • Kubernetes
  • rancher
  • 云原生CNCF
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks requires new models to be trained from scratch. For models that share the same domain, it is likely that the first few layers learn similar features. Hence training new models from scratch for these tasks is likely wasteful. Regarding the first limitation, we know that model quality can usually be naively expensive, and is unlikely to scale to the level that we want for complex tasks. To achieve a reasonable quality on non-trivial tasks, the amount of labeled data required is large too. For the second limitation
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • Flink requires a sufficient number of processing slots in order to execute all tasks of an application. • The JobManager cannot restart the application until enough slots become available JobManager failures ??? Vasiliki Kalavri | Boston University 2020 When the JobManager fails all tasks are automatically cancelled. The new JobManager performs the following steps: 1. It requests It requests processing slots. 3. It restarts the application and resets the state of all its tasks to the last completed checkpoint. Highly available Flink setup ??? Vasiliki Kalavri | Boston University
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.5.0 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e- ˓→19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 172 页 | 6.94 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.5.1 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e- ˓→19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 172 页 | 6.94 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.5.2 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e- ˓→19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 172 页 | 6.94 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.5.1 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 267 页 | 5.80 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.5.2 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 267 页 | 5.80 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.5.0 Documentation

    kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running 2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPAAK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009' Or you can submit tasks directly through local beeline: ${SPARK_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'
    0 码力 | 267 页 | 5.80 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.9.0-SNAPSHOT Documentation

    Any Scale Most of the Kyuubi engine types have a distributed backend or can schedule distributed tasks at runtime. They can process data on single-node machines or clusters, such as YARN and Kubernetes script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPARK_HOME}. Of course, if you have an image that contains the Spark binary package, you kyuubi-example -- /bin/bash ${KYUUBI_HOME}/bin/beeline -u 'jdbc:kyuubi://localhost:10009' Or you can submit tasks directly through local beeline: ${KYUUBI_HOME}/bin/beeline -u 'jdbc:kyuubi://${hostname}:${port}'
    0 码力 | 220 页 | 3.93 MB | 1 年前
    3
共 253 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 26
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewPyTorchReleaseNotesFaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020ApacheKyuubi1.5Documentation1.9SNAPSHOT
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩