《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review
training data is an expensive undertaking. Factoring in the costs of training human labelers on a given task, and then making sure that the labels are reliable, human labeling gets very expensive very quickly Even after that it is likely that the model might not be able to capture the intricacies of your task well. Self-Supervised learning helps to significantly improve the quality you can achieve while retaining when it comes to training a model for a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute0 码力 | 31 页 | 4.03 MB | 1 年前3Kubernetes Native DevOps Practice
DevOps Solution • Architecture and Features • CRD and operator design • Pipeline / Stage/ Task / Task Template / Version Control • Logging, monitoring, autoscaling, high availability • Extensibility or persisted [] Resources - Resource requirement ActiveDeadlineSeconds Timeout of build task Lifecycle - Actions defined for postStart/preStop Kubernetes Capabilities/Advantages the running build tasks, default: 12 hours backoffLimit Maximum retry count before mark the build task as failed, default: 6 ttlSecondsAfterFinished Time to clean up finished build tasks after if finishes0 码力 | 21 页 | 6.39 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
rewarding to go back to the drawing board and experiment with another architecture that better suits the task. As an analogy, when renovating a house to improve the lighting, it is possible to repaint the walls https://en.wikipedia.org/wiki/Support-vector_machine 3. Train the model: Train the model for the task at hand5 with the embeddings as input. Refer to Figure 4-4 that describes the three steps visually single fully connected layer followed by a softmax activation, since it is a binary classification task. An important caveat is that the model quality naturally depends on the quality of the embedding0 码力 | 53 页 | 3.92 MB | 1 年前3Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020
Boston University 2020 Scaling approaches Metrics • service time and waiting time per tuple and per task • total time spent processing a tuple and all its derived results • CPU utilization, congestion University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per task • total time spent processing a tuple and all its derived results • Policy • each operator as University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per task • total time spent processing a tuple and all its derived results • Policy • each operator as0 码力 | 93 页 | 2.42 MB | 1 年前3Apache Kyuubi 1.6.1 Documentation
succeeded; numTasks: 1; Took: 13 msec 2021-10-28 13:56:27.663 INFO scheduler.StatsReportListener: task runtime:(count: 1, mean: 8.000000, stdev: 0.000000, max: 8.000000, min: 8.000000) 2021-10-28 13:56:27 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: task result size:(count: 1, mean: 1402.000000, stdev: 0.000000, max: 1402.000000, min: 1402.000000) 2021-10-28 PT1M Time(ms) that an idle async thread of the operation execution thread pool will wait for a new task to arrive before terminating in SQL engine applications durat ion 1.0.0 kyuubi.backend.en gine.exec0 码力 | 401 页 | 5.42 MB | 1 年前3Apache Kyuubi 1.6.0 Documentation
succeeded; numTasks: 1; Took: 13 msec 2021-10-28 13:56:27.663 INFO scheduler.StatsReportListener: task runtime:(count: 1, mean: 8.000000, stdev: 0.000000, max: 8.000000, min: 8.000000) 2021-10-28 13:56:27 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: task result size:(count: 1, mean: 1402.000000, stdev: 0.000000, max: 1402.000000, min: 1402.000000) 2021-10-28 PT1M Time(ms) that an idle async thread of the operation execution thread pool will wait for a new task to arrive before terminating in SQL engine applications durat ion 1.0.0 kyuubi.backend.en gine.exec0 码力 | 391 页 | 5.41 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 全部相加除以 task 数量 ➢ IO rate std deviation:方差、反映各个 mapTask 处理的差值,越小越均衡 2)注意:如果测试过程中,出现异常 (1)可以在 yarn-site.xml mapreduce.task.io.sort.mb Shuffle的环形缓冲区大小,默认100m,可以提高到200m mapreduce.map.sort.spill.percent 环形缓冲区溢出的阈值,默认80% ,可以提高的90% 9)异常重试 mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 map.output.compress.codec", SnappyCodec.class,CompressionCodec.class); 3)增加每次Merge合并次数 mapreduce.task.io.sort.factor默认10,可以提高到20 6)mapreduce.map.memory.mb 默认MapTask内存上限1024MB。 可以根据128m数据对应1G内存原则提高该内存。0 码力 | 41 页 | 2.32 MB | 1 年前3OpenShift Container Platform 4.10 CLI 工具
mypipelinerun 管道 管道运 运行的日志,其中包含命名空 行的日志,其中包含命名空间 间中的所有任 中的所有任务 务和步 和步骤 骤 5.3.6. 任务管理命令 5.3.6.1. task 管理任务。 示例: 示例: 显 显示帮助信息 示帮助信息 $ tkn pipelinerun delete mypipelinerun1 mypipelinerun2 -n myspace 工具 工具 92 5.3.6.2. task delete 删除任务。 示例:从命名空 示例:从命名空间 间中 中删 删除 除 mytask1 和 和 mytask2 任 任务 务 5.3.6.3. task describe 描述任务。 示例:描述命名空 示例:描述命名空间 间中的 中的 mytask 任 任务 务 5.3.6.4. task list 列出任务。 示例: 示例: 中的所有任务 务 5.3.6.5. task logs 显示任务日志。 示例: 示例:显 显示 示 mytask 任 任务 务的 的 mytaskrun 任 任务运 务运行的日志 行的日志 5.3.6.6. task start 启动一个任务。 示例: 示例: 在命名空 在命名空间 间中 中启动 启动 mytask 任 任务 务 5.3.7. task run 命令 5.3.7.1. taskrun0 码力 | 120 页 | 1.04 MB | 1 年前3Apache Kyuubi 1.4.1 Documentation
succeeded; numTasks: 1; Took: 13 msec 2021-10-28 13:56:27.663 INFO scheduler.StatsReportListener: task runtime:(count: 1, mean: 8.000000, stdev: 0.000000, max: 8.000000, min: 8.000000) 2021-10-28 13:56:27 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: task result size:(count: 1, mean: 1402.000000, stdev: 0.000000, max: 1402.000000, min: 1402.000000) 2021-10-28 principal should not use now. Instead, you can schedule a periodically kinit process via crontab task on the local machine that hosts Kyuubi server or simply use Kyuubi Kinit. 2. Deploy Kyuubi engines0 码力 | 233 页 | 4.62 MB | 1 年前3Apache Kyuubi 1.4.0 Documentation
succeeded; numTasks: 1; Took: 13 msec 2021-10-28 13:56:27.663 INFO scheduler.StatsReportListener: task runtime:(count: 1, mean: 8.000000, stdev: 0.000000, max: 8.000000, min: 8.000000) 2021-10-28 13:56:27 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: task result size:(count: 1, mean: 1402.000000, stdev: 0.000000, max: 1402.000000, min: 1402.000000) 2021-10-28 principal should not use now. Instead, you can schedule a periodically kinit process via crontab task on the local machine that hosts Kyuubi server or simply use Kyuubi Kinit. 2. Deploy Kyuubi engines0 码力 | 233 页 | 4.62 MB | 1 年前3
共 244 条
- 1
- 2
- 3
- 4
- 5
- 6
- 25