积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(244)VirtualBox(113)Apache Kyuubi(44)Pandas(32)Apache Flink(12)机器学习(11)OpenShift(6)Apache Karaf(6)边缘计算(5)Istio(4)

语言

全部英语(230)中文(简体)(10)中文(繁体)(2)中文(简体)(1)英语(1)

格式

全部PDF文档 PDF(220)其他文档 其他(24)
 
本次搜索耗时 0.645 秒,为您找到相关结果约 244 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • Apache Flink
  • 机器学习
  • OpenShift
  • Apache Karaf
  • 边缘计算
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    context (neighboring words), and the label (masked word to be predicted). The word tokens are vectorized by replacing the actual words by their indices in our vocabulary. If a word doesn’t exist in the overfitting. We can now vectorize the train and test datasets. x_train_vectorized = vectorization_layer(x_train) x_test_vectorized = vectorization_layer(x_test) Step 3: Initialization of the Embedding model! bow_model_w2v_history = bow_model_w2v.fit( x_train_vectorized, y_train, batch_size=64, epochs=10, validation_data=(x_test_vectorized, y_test)) Epoch 1/10 313/313 [==============================]
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    statistical software suite also provides the data set corresponding to the pandas DataFrame. Also SAS vectorized operations, filtering, string processing operations, and more have similar functions in pandas Minimum Ver- sion Notes SciPy 1.7.1 Miscellaneous statistical functions numba 0.53.1 Alternative execution engine for rolling operations (see Enhancing Perfor- mance) xarray 0.19.0 pandas-like API for N-dimensional other columns. In pandas, you’re able to do operations on whole columns directly. pandas provides vectorized operations by specifying the individual Series in the DataFrame. New columns can be assigned in
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    solution. It supports vector operations which operate on a vector (or a batch) of x variables (vectorized execution) instead of one variable at a time. Although it is possible to work without it, you would deep learning applications which frequently operate on batches of data. Using vectorized operations also speeds up the execution (and this book is about efficiency, after all!). We highly recommend learning
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    HTML parser for read_html (see note) matplotlib 2.2.2 Visualization numba 0.46.0 Alternative execution engine for rolling operations openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 2000-01-10 0.030876 1.371900 0.609836 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    HTML parser for read_html (see note) matplotlib 2.2.2 Visualization numba 0.46.0 Alternative execution engine for rolling operations openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 2000-01-10 0.413806 2.489837 1.220589 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.4

    HTML parser for read_html (see note) matplotlib 2.2.2 Visualization numba 0.46.0 Alternative execution engine for rolling operations openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 2000-01-10 0.030876 1.371900 0.609836 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and
    0 码力 | 3081 页 | 10.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit -1.0.3

    HTML parser for read_html (see note) matplotlib 2.2.2 Visualization numba 0.46.0 Alternative execution engine for rolling operations openpyxl 2.5.7 Reading / writing for xlsx files pandas-gbq 0.8.0 generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 2000-01-10 0.030876 1.371900 0.609836 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and
    0 码力 | 3071 页 | 10.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', analysis toolkit, Release 0.25.0 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and over the rows is not needed and can be avoided with one of the following approaches: • Look for a vectorized solution: many operations can be performed using built-in methods or NumPy func- tions, (boolean)
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', analysis toolkit, Release 0.25.1 Applying elementwise functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and over the rows is not needed and can be avoided with one of the following approaches: • Look for a vectorized solution: many operations can be performed using built-in methods or NumPy func- tions, (boolean)
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods. In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 2000-01-10 0.413993 0.137720 NaN Applying Elementwise Functions Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap() on DataFrame and over the rows is not needed and can be avoided with one of the following approaches: • Look for a vectorized solution: many operations can be performed using built-in methods or NumPy func- tions, (boolean)
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
共 244 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 25
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturespandaspowerfulPythondataanalysistoolkit1.50rc0CompressionTechniques1.00.250.24
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩