积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(404)VirtualBox(113)机器学习(56)Apache Kyuubi(44)OpenShift(37)Pandas(32)Kubernetes(18)Apache Flink(17)Istio(13)rancher(13)

语言

全部英语(270)中文(简体)(122)英语(6)中文(简体)(3)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(377)其他文档 其他(24)PPT文档 PPT(2)DOC文档 DOC(1)
 
本次搜索耗时 0.081 秒,为您找到相关结果约 404 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • Apache Kyuubi
  • OpenShift
  • Pandas
  • Kubernetes
  • Apache Flink
  • Istio
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hardening Guide - Rancher v2.3.3+

    H a r d e n i n g G u i d e - R a n c h e r v 2 . 3 . 3 + C o nt e nt s Har d e n i n g G u i d e f or R an c h e r 2. 3. 3+ w i t h K u b e r n e t e s 1. 16 . . . 2 O v e r v i e w . . . . . . . . . . . . . 2 P r ofi l e D e fi n i t i on s . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 1 - R an c h e r R K E K u b e r n e t e s c l u s t e r h os t c on fi gu r at i on . . . . . 3 1. 1. 1 - C on fi gu r e d e f au l t s y s c t l s e t t i n gs on al l h os t s . . . . . . . . 3 1. 4. 11 E n s u r e t h at t h e e t c d d at a d i r e c t or y p e r m i s s i on s ar e s e t
    0 码力 | 44 页 | 279.78 KB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual_fr_FR.pdf

    Oracle VM VirtualBox R ⃝ Manuel de l’utilisateur Version 4.3.13 c⃝ 2004-2014 Oracle Corporation http://www.virtualbox.org Contents 1 Premiers pas 11 1.1 À quoi sert la virtualisation ? . . . . Paramètres de son . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.8 Paramètres réseau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.9 Ports série . . . . . . . . . . . 98 6 Le réseau virtuel 99 6.1 Matériel réseau virtuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Introduction aux modes réseaux . . . . . . . . . . .
    0 码力 | 386 页 | 5.61 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    NVIDIA driver release 450.51 (or later R450), 470.57 (or later R470), 510.47 (or later R510), 515.65 (or later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520 drivers, which are not forward- compatible with CUDA 12.1. For a complete list of supported drivers while maintaining target accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. PyTorch
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Apache RocketMQ – Trillion Messaging in Practice

    RocketMQ – Trillion Messaging in Practice 周新宇(花名:尘央) © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p PROFILE MCS, has rich experience in distributed system design and performance tuning yukon@apache.org © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p Part I © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p 2016 2007 2010 2011 2012 2015 Notify Born from MetaQ v2.0 v3.0 RocketMQ v3.0 OS Apache RocketMQ © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p MetaQ RocketMQ Notify Aliware MQ Ordered messaging,Pull model Commercial Distribution,
    0 码力 | 48 页 | 2.55 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 Snapshotting Protocols p1 p2 p3 m AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G UYJjuEzsCDS6jDHTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G UYJjuEzsCDS6jDHTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    far and let R be the maximum value of rank(.) seen so far. ??? Vasiliki Kalavri | Boston University 2020 5 Let n be the number of distinct elements in the input stream so far and let R be the maximum maximum value of rank(.) seen so far. ̂n = 2R Claim: The maximum observed rank is a good estimate of log2n. In other words, the estimated number of distinct elements is equal to: ??? Vasiliki Kalavri | is the maximum we’ve seen, that indicates 4 distinct elements, … It takes 2r hash calls before we encounter a result with r 0s. 6 ??? Vasiliki Kalavri | Boston University 2020 Is this a good estimate
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    CHAPTER ONE HOW TO BUILD DOCS LOCALLY 1. Install dependency requirements python3 -m pip install -r dev/requirements.txt 2. Conda install pandoc conda install pandoc 3. Build the docs python3 setup pyflink-docs, Release release-1.15 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908. ˓→local.log Besides, you could also check if the files of packages as following: # -rw-r--r-- 1 dianfu staff 190K 10 18 20:43 flink-cep-1.15.2.jar # -rw-r--r-- 1 dianfu staff 475K 10 18 20:43 flink-connector-files-1.15.2.jar # -rw-r--r-- 1 dianfu staff 93K 10 18
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    CHAPTER ONE HOW TO BUILD DOCS LOCALLY 1. Install dependency requirements python3 -m pip install -r dev/requirements.txt 2. Conda install pandoc conda install pandoc 3. Build the docs python3 setup pyflink-docs, Release release-1.16 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908. ˓→local.log Besides, you could also check if the files of packages as following: # -rw-r--r-- 1 dianfu staff 190K 10 18 20:43 flink-cep-1.15.2.jar # -rw-r--r-- 1 dianfu staff 475K 10 18 20:43 flink-connector-files-1.15.2.jar # -rw-r--r-- 1 dianfu staff 93K 10 18
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Example 22 i=1 i=2 i=3 i=4 λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s ??? Vasiliki Kalavri | Boston University 2020 Example 2000 r/s λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s o2[λp] = 1000 r/s o2[λo] = 3800 r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s o3[λp] = 2930 r/s o3[λo] = 600 r/s ? 2000 r/s λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s o2[λp] = 1000 r/s o2[λo] = 3800 r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s o3[λp] = 2930 r/s o3[λo] = 600 r/s π2
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    428 22 rpy2 / R interface 431 22.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 22.2 Converting DataFrames into R objects . . . . . . . . . . . 432 22.3 Calling R functions with pandas objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 22.4 High-level interface to R estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 24 Comparison with R / R libraries 435 24.1 data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
共 404 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 41
前往
页
相关搜索词
HardeningGuideRancherv23.3OracleVMVirtualBoxUserManualfrFRpdfPyTorchReleaseNotesApacheRocketMQTrillionMessaginginPracticeExactlyoncefaulttoleranceFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020CardinalityfrequencyestimationPy1.15Documentation1.16ElasticitystatemigrationPartpandaspowerfulPythondataanalysistoolkit0.12
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩