Hardening Guide - Rancher v2.3.3+H a r d e n i n g G u i d e - R a n c h e r v 2 . 3 . 3 + C o nt e nt s Har d e n i n g G u i d e f or R an c h e r 2. 3. 3+ w i t h K u b e r n e t e s 1. 16 . . . 2 O v e r v i e w . . . . . . . . . . . . . 2 P r ofi l e D e fi n i t i on s . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 1 - R an c h e r R K E K u b e r n e t e s c l u s t e r h os t c on fi gu r at i on . . . . . 3 1. 1. 1 - C on fi gu r e d e f au l t s y s c t l s e t t i n gs on al l h os t s . . . . . . . . 3 1. 4. 11 E n s u r e t h at t h e e t c d d at a d i r e c t or y p e r m i s s i on s ar e s e t0 码力 | 44 页 | 279.78 KB | 1 年前3
Oracle VM VirtualBox UserManual_fr_FR.pdfOracle VM VirtualBox R ⃝ Manuel de l’utilisateur Version 4.3.13 c⃝ 2004-2014 Oracle Corporation http://www.virtualbox.org Contents 1 Premiers pas 11 1.1 À quoi sert la virtualisation ? . . . . Paramètres de son . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.8 Paramètres réseau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.9 Ports série . . . . . . . . . . . 98 6 Le réseau virtuel 99 6.1 Matériel réseau virtuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Introduction aux modes réseaux . . . . . . . . . . .0 码力 | 386 页 | 5.61 MB | 1 年前3
PyTorch Release NotesNVIDIA driver release 450.51 (or later R450), 470.57 (or later R470), 510.47 (or later R510), 515.65 (or later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520 drivers, which are not forward- compatible with CUDA 12.1. For a complete list of supported drivers while maintaining target accuracy. This model script is available on GitHub and NGC. ‣ Mask R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. PyTorch0 码力 | 365 页 | 2.94 MB | 1 年前3
Apache RocketMQ – Trillion Messaging in PracticeRocketMQ – Trillion Messaging in Practice 周新宇(花名:尘央) © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p PROFILE MCS, has rich experience in distributed system design and performance tuning yukon@apache.org © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p Part I © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p 2016 2007 2010 2011 2012 2015 Notify Born from MetaQ v2.0 v3.0 RocketMQ v3.0 OS Apache RocketMQ © 2 0 1 7 A l i b a b a M i d d l e w a r e G r o u p MetaQ RocketMQ Notify Aliware MQ Ordered messaging,Pull model Commercial Distribution,0 码力 | 48 页 | 2.55 MB | 1 年前3
Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020University 2020 Snapshotting Protocols p1 p2 p3 mAB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G UYJjuEzsCDS6jDHTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G UYJjuEzsCDS6jDHTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwBD/ozF AB53icbVBNS8NAEJ34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G 0 码力 | 81 页 | 13.18 MB | 1 年前3
Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020far and let R be the maximum value of rank(.) seen so far. ??? Vasiliki Kalavri | Boston University 2020 5 Let n be the number of distinct elements in the input stream so far and let R be the maximum maximum value of rank(.) seen so far. ̂n = 2R Claim: The maximum observed rank is a good estimate of log2n. In other words, the estimated number of distinct elements is equal to: ??? Vasiliki Kalavri | is the maximum we’ve seen, that indicates 4 distinct elements, … It takes 2r hash calls before we encounter a result with r 0s. 6 ??? Vasiliki Kalavri | Boston University 2020 Is this a good estimate0 码力 | 69 页 | 630.01 KB | 1 年前3
PyFlink 1.15 DocumentationCHAPTER ONE HOW TO BUILD DOCS LOCALLY 1. Install dependency requirements python3 -m pip install -r dev/requirements.txt 2. Conda install pandoc conda install pandoc 3. Build the docs python3 setup pyflink-docs, Release release-1.15 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908. ˓→local.log Besides, you could also check if the files of packages as following: # -rw-r--r-- 1 dianfu staff 190K 10 18 20:43 flink-cep-1.15.2.jar # -rw-r--r-- 1 dianfu staff 475K 10 18 20:43 flink-connector-files-1.15.2.jar # -rw-r--r-- 1 dianfu staff 93K 10 180 码力 | 36 页 | 266.77 KB | 1 年前3
PyFlink 1.16 DocumentationCHAPTER ONE HOW TO BUILD DOCS LOCALLY 1. Install dependency requirements python3 -m pip install -r dev/requirements.txt 2. Conda install pandoc conda install pandoc 3. Build the docs python3 setup pyflink-docs, Release release-1.16 (continued from previous page) # -rw-r--r-- 1 dianfu staff 45K 10 18 20:54 flink-dianfu-python-B-7174MD6R-1908. ˓→local.log Besides, you could also check if the files of packages as following: # -rw-r--r-- 1 dianfu staff 190K 10 18 20:43 flink-cep-1.15.2.jar # -rw-r--r-- 1 dianfu staff 475K 10 18 20:43 flink-connector-files-1.15.2.jar # -rw-r--r-- 1 dianfu staff 93K 10 180 码力 | 36 页 | 266.80 KB | 1 年前3
Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 20202020 Example 22 i=1 i=2 i=3 i=4 λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s ??? Vasiliki Kalavri | Boston University 2020 Example 2000 r/s λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s o2[λp] = 1000 r/s o2[λo] = 3800 r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s o3[λp] = 2930 r/s o3[λo] = 600 r/s ? 2000 r/s λ1 o = 2000r/s λ1 p = 450r/s λ2 o = 1800r/s λ2 p = 550r/s o2[λp] = 1000 r/s o2[λo] = 3800 r/s λ1 p = 1000r/s λ2 p = 950r/s λ3 p = 980r/s o3[λp] = 2930 r/s o3[λo] = 600 r/s π20 码力 | 93 页 | 2.42 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12428 22 rpy2 / R interface 431 22.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 22.2 Converting DataFrames into R objects . . . . . . . . . . . 432 22.3 Calling R functions with pandas objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 22.4 High-level interface to R estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 24 Comparison with R / R libraries 435 24.1 data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 657 页 | 3.58 MB | 1 年前3
共 404 条
- 1
- 2
- 3
- 4
- 5
- 6
- 41
相关搜索词
HardeningGuideRancherv23.3OracleVMVirtualBoxUserManualfrFRpdfPyTorchReleaseNotesApacheRocketMQTrillionMessaginginPracticeExactlyoncefaulttoleranceFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020CardinalityfrequencyestimationPy1.15Documentation1.16ElasticitystatemigrationPartpandaspowerfulPythondataanalysistoolkit0.12













