积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(180)VirtualBox(109)机器学习(41)OpenShift(12)边缘计算(4)rancher(3)Apache Flink(3)Istio(2)云原生CNCF(2)Docker(1)

语言

全部英语(136)中文(简体)(42)俄语(1)英语(1)

格式

全部PDF文档 PDF(177)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 180 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • OpenShift
  • 边缘计算
  • rancher
  • Apache Flink
  • Istio
  • 云原生CNCF
  • Docker
  • 全部
  • 英语
  • 中文(简体)
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility and speed as a deep learning framework and provides accelerated NumPy-like functionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support performance and convergence from NVIDIA Volta™ tensor cores by using the latest deep learning example networks and model scripts for training. Each example model trains with mixed precision Tensor Cores on
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    "Population based training of neural networks." arXiv preprint arXiv:1711.09846 (2017). searched with the techniques that we discussed in this section. However, to truly design a Neural Network from scratch, different approach. The next section dives into the search for neural architectures. Neural Architecture Search On a high level, Neural Architecture Search (NAS) is similar to Hyperparameter Search. architecture. In fact, we could use HPO to decide whether adding a dropout layer is a good idea. Neural Architectures are composed of layers stacked on top of each other with a given layer processing the
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors ● torch.nn: Models, Loss Functions ● torch.optim: (like NumPy) on GPUs ○ Automatic differentiation for training deep neural networks Training Neural Networks Training Define Neural Network Loss Function Optimization Algorithm More info about the lecture video. Training & Testing Neural Networks Validation Testing Training Guide for training/validation/testing can be found here. Training & Testing Neural Networks - in Pytorch Validation Testing
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 keras tutorial

    is prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the ........................................................................... 11 Artificial Neural Networks ............................................................................................ ..... 12 Convolutional Neural Network (CNN) ........................................................................................................... 13 Recurrent Neural Network (RNN) ..........
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Machine Learning

    Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward Networks • Also Also called feedforward neural networks or multilayer perceptrons (MLPs) • The goal is to approximate some function f ∗ • E.g., for a classifier, y = f ∗(x) maps an input x to a category y • A feedforward usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos are
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    recall by repetition (i.e., increase the weight of that connection). Can we do the same with neural networks? Can we optimally prune the network connections, remove extraneous nodes, etc. while retaining compression ratio which results in lower transmission and storage costs. Figure 5-1 visually depicts two networks. The one on the left is the original network and the one on the right is its pruned version. Note compression ratio. Figure 5-1: An illustration of pruning weights (connections) and neurons (nodes) in a neural network consisting of fully connected layers. Exercise: Sparsity improves compression Let's import
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Compression techniques are used to achieve an efficient representation of one or more layers in a neural network with a possible quality trade off. The efficiency goals could be the optimization of the these techniques can help reduce complexity and improve generalization. Let us consider an arbitrary neural network layer. We can abstract it using a function with an input and parameters such that . In the learnt for quantizing deep learning models. Looking Under the Hood As we know, one of the basic neural network operation is as follows: f(X; W, b) = σ(XW + b) Here, X, W and b are tensors (mathematical
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Machine learning in turn is one approach towards artificial intelligence. Deep learning with neural networks has been the dominant methodology of training new machine learning models for the past decade Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012): 1097-1105. do linear algebra operations training deep networks. However, one of the critical improvements in the past decade was the ReLU activation function. ReLU2 allowed the gradients to back-propagate deeper in the networks. Previous iterations
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    architectural breakthroughs in the field of neural networks. It introduced the idea of stacking layers to learn complex relationships. Convolutional Neural Nets (CNNs) were another important breakthrough breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal data. These breakthroughs contributed to bigger and bigger models sentence “the quick brown fox jumps over the lazy dog”, we can mask the word “jumps” and let the neural network predict the word it thinks fits in the sentence based on the surrounding words (context)
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08深度学习-深度卷积神经网络

    经网络结构,由谷歌团队于2019年提出,该 模型在图像分类、目标检测和图像分割等任 务中取得了不错的结果。 EfficientNet的设计思路来源于模型优化的 两个主要思想: 神经网络结构搜索(Neural Architecture Search,NAS)和模型融合。 其主要贡献在于开创性地提出了通过均匀缩 放(Accurate Scaling)来调整网络深度 、宽度和分辨率的方法。 23 3 Classification with Deep Convolutional Neural Networks (Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012) 31 参考文献 • VGG:Very Deep Convolutional Networks for Large-Scale Image Recognition (Karen 2016) • DenseNet:Densely Connected Convolutional Networks (Gao Huang et al., 2017) • MobileNet : MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (Andrew G. Howard
    0 码力 | 32 页 | 2.42 MB | 1 年前
    3
共 180 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 18
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAutomationMachinePytorchTutorialkerastutorialAdvancedCompressionTechniquesIntroductionArchitectures机器学习课程温州大学08深度卷积神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩