积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(322)VirtualBox(113)机器学习(62)Apache Kyuubi(44)Pandas(32)Kubernetes(15)OpenShift(13)Apache Flink(8)边缘计算(6)Istio(5)

语言

全部英语(251)中文(简体)(63)中文(繁体)(3)英语(3)中文(简体)(2)

格式

全部PDF文档 PDF(298)其他文档 其他(24)
 
本次搜索耗时 0.040 秒,为您找到相关结果约 322 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • 机器学习
  • Apache Kyuubi
  • Pandas
  • Kubernetes
  • OpenShift
  • Apache Flink
  • 边缘计算
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Model and Operate Datacenter by Kubernetes at eBay (提交版)

    Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your
    0 码力 | 25 页 | 3.60 MB | 1 年前
    3
  • pdf文档 The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr

    The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment
    0 码力 | 51 页 | 2.00 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    --shm-size= in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations and 2X reduced memory storage for intermediates (reducing the overall memory consumption of your model). Additionally, GEMMs and convolutions with FP16 inputs can run on Tensor Cores, which provide an NVIDIA Volta™ tensor cores by using the latest deep learning example networks and model scripts for training. Each example model trains with mixed precision Tensor Cores on NVIDIA Volta and NVIDIA Turing™,
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ........................................................................................... 17 Model ................................................................................................. ............................................................................... 58 10. Keras ― Model Compilation ..................................................................................... ..... 61 Compile the model ........................................................................................................................................ 62 Model Training ..............
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer effectively with others who speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our picked to benchmark learning techniques. It is followed by a short discussion on exchanging model quality and model footprint. An in-depth discussion of data augmentation and distillation follows right after
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient layers and architectures. Let’s start our journey with
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Model 的实用属性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Model 类模型方法 . . . . . . . . . . . . . . . 239 20.8 plot_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.9 multi_gpu_model . . . . . . . . . . . . . . . . . . . . . . Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺 序模型,它是由多个网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API, 它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential model = Sequential()
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using model.chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the model footprint by reducing the number of trainable parameters. However requires many trials and evaluations to reach a smaller model, if it is at all possible. Second, such an approach doesn’t generalize well because the model designs are subjective to the specific problem. In In this chapter, we introduce Quantization, a model compression technique that addresses both these issues. We’ll start with a gentle introduction to the idea of compression. Details of quantization and
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model (size, latency, etc). And as reliable, human labeling gets very expensive very quickly. Even after that it is likely that the model might not be able to capture the intricacies of your task well. Self-Supervised learning helps to efficacy through a colab. Finally, we introduce miscellaneous techniques to help you improve your model’s quality metrics without taking a hit on any of the footprint metrics. These techniques might get
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 322 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 33
前往
页
相关搜索词
ModelandOperateDatacenterbyKubernetesateBay提交TheFutureofCloudNativeApplicationswithOpenApplicationOAMDaprPyTorchReleaseNoteskerastutorialEfficientDeepLearningBookEDLChapterTechniquesArchitecturesKeras基于Python深度学习AI模型千问qwen中文文档CompressionAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩