积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(335)VirtualBox(113)OpenShift(47)Apache Kyuubi(44)Pandas(32)机器学习(19)Kubernetes(14)Service Mesh(9)rancher(7)Apache Flink(7)

语言

全部英语(234)中文(简体)(94)英语(3)中文(繁体)(2)西班牙语(1)中文(简体)(1)

格式

全部PDF文档 PDF(310)其他文档 其他(24)DOC文档 DOC(1)
 
本次搜索耗时 0.705 秒,为您找到相关结果约 335 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Kubernetes
  • Service Mesh
  • rancher
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 西班牙语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    page) In [7]: df.loc[0, 'b'] Out[7]: 'nan' New Behavior: In [53]: data = 'a,b,c\n1,,3\n4,5,6' In [54]: df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True) In [55]: df.loc[0, Sandrine Pataut + • Sangwoong Yoon • Santosh Kumar + • Saurav Chakravorty + • Scott McAllister + 54 Chapter 1. What’s New in 0.24.0 (January 25, 2019) pandas: powerful Python data analysis toolkit, A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.947263 -5 NaN 2013-01-02 -0.488388 -0.003789 -0
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    2013-01-03 1.789156 0.984494 1.794371 -0.110487 2013-01-01 -0.521273 1.461184 -0.495508 1.027403 54 Chapter 2. Getting started pandas: powerful Python data analysis toolkit, Release 1.0.0 2.3.3 Selection A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -0.495508 -5 NaN 2013-01-02 -1.217227 -0.814532 -1 context, use the method bool(): In [53]: pd.Series([True]).bool() Out[53]: True In [54]: pd.Series([False]).bool() Out[54]: False In [55]: pd.DataFrame([[True]]).bool() Out[55]: True In [56]: pd.DataFrame([[False]])
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    Applying a binary ufunc like numpy.power() now aligns the inputs when both are Series (GH23293). In [54]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c']) In [55]: s2 = pd.Series([3, 4, 5], index=['d', A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.126404 -5 NaN 2013-01-02 -0.275165 -0.804503 -0 0.000000 -1.126404 5 NaN 2013-01-02 0.275165 0.804503 -0.679470 10 1.0 (continues on next page) 54 Chapter 3. Getting started pandas: powerful Python data analysis toolkit, Release 0.25.0 (continued
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    Applying a binary ufunc like numpy.power() now aligns the inputs when both are Series (GH23293). In [54]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c']) In [55]: s2 = pd.Series([3, 4, 5], index=['d', A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -0.612266 -5 NaN 2013-01-02 -0.348338 -1.733068 -1 000000 0.000000 0.612266 5 NaN 2013-01-02 -0.348338 1.733068 1.838330 10 1.0 (continues on next page) 54 Chapter 3. Getting started pandas: powerful Python data analysis toolkit, Release 0.25.1 (continued
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.4

    A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.222775 -5 NaN 2013-01-02 -0.291550 -1.167807 -1 ...: index_col=0, parse_dates=True) ...: In [3]: air_quality.head() (continues on next page) 54 Chapter 1. Getting started pandas: powerful Python data analysis toolkit, Release 1.0.4 (continued analysis toolkit, Release 1.0.4 In [53]: pd.Series([True]).bool() Out[53]: True In [54]: pd.Series([False]).bool() Out[54]: False In [55]: pd.DataFrame([[True]]).bool() Out[55]: True In [56]: pd.DataFrame([[False]])
    0 码力 | 3081 页 | 10.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -0.261392 -5 NaN 2013-01-02 -0.471064 -0.748347 -0 ...: index_col=0, parse_dates=True) ...: In [3]: air_quality.head() (continues on next page) 54 Chapter 1. Getting started pandas: powerful Python data analysis toolkit, Release 1.0.5 (continued analysis toolkit, Release 1.0.5 In [53]: pd.Series([True]).bool() Out[53]: True In [54]: pd.Series([False]).bool() Out[54]: False In [55]: pd.DataFrame([[True]]).bool() Out[55]: True In [56]: pd.DataFrame([[False]])
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit -1.0.3

    A where operation with setting. In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -0.935783 -5 NaN 2013-01-02 -1.093443 -1.279622 -0 plot.box(), which refers to a boxplot. The box method is applicable on the air quality example data: 54 Chapter 2. Getting started pandas: powerful Python data analysis toolkit, Release 1.0.3 In [9]: air_quality analysis toolkit, Release 1.0.3 In [53]: pd.Series([True]).bool() Out[53]: True In [54]: pd.Series([False]).bool() Out[54]: False In [55]: pd.DataFrame([[True]]).bool() Out[55]: True In [56]: pd.DataFrame([[False]])
    0 码力 | 3071 页 | 10.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    2 and Class 3. • Name: Name of passenger. • Sex: Gender of passenger. • Age: Age of passenger. 54 Chapter 1. Getting started pandas: powerful Python data analysis toolkit, Release 1.1.1 • SibSp: started pandas: powerful Python data analysis toolkit, Release 1.1.1 In [54]: outer_join[pd.isna(outer_join['value_x'])] Out[54]: key value_x value_y 5 E NaN -1.044236 In [55]: outer_join[pd.notna( Out[53]: 0 NaN 1 0.929249 2 NaN 3 -1.308847 4 -1.016424 5 NaN dtype: float64 In [54]: outer_join['value_x'].sum() Out[54]: -3.5940742896293765 One difference is that missing data cannot be compared to
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    2 and Class 3. • Name: Name of passenger. • Sex: Gender of passenger. • Age: Age of passenger. 54 Chapter 1. Getting started pandas: powerful Python data analysis toolkit, Release 1.1.0 • SibSp: started pandas: powerful Python data analysis toolkit, Release 1.1.0 In [54]: outer_join[pd.isna(outer_join['value_x'])] Out[54]: key value_x value_y 5 E NaN -1.044236 In [55]: outer_join[pd.notna( Out[53]: 0 NaN 1 0.929249 2 NaN 3 -1.308847 4 -1.016424 5 NaN dtype: float64 In [54]: outer_join['value_x'].sum() Out[54]: -3.5940742896293765 One difference is that missing data cannot be compared to
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
共 335 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 34
前往
页
相关搜索词
深度学习PyTorch入门实战54AutoEncoder编码码器编码器pandaspowerfulPythondataanalysistoolkit0.241.00.251.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩