积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(208)OpenShift(57)机器学习(51)Kubernetes(28)云原生CNCF(13)Service Mesh(13)Hadoop(11)VMWare(8)Istio(8)RocketMQ(6)

语言

全部中文(简体)(197)中文(简体)(5)英语(4)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(204)PPT文档 PPT(3)DOC文档 DOC(1)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 208 个.
  • 全部
  • 云计算&大数据
  • OpenShift
  • 机器学习
  • Kubernetes
  • 云原生CNCF
  • Service Mesh
  • Hadoop
  • VMWare
  • Istio
  • RocketMQ
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 VMware vSphere:优化和扩展

    培训服务介绍 VMware vSphere:优化和扩展 培训方式  讲师指导培训  实时在线培训 课程用时  为期五 (5) 天的讲师指导课堂培训  听课时间占 60%,动手实验时间占 40% 目标学员 经验丰富的系统管理员和系统集成人员 课程适用对象 ☒ 管理员 ☐ 专家 ☒ 工程师 ☒ 高级用户 ☐ 架构师 ☐ 专业人员 vCenter Server™ 5.0 讲授。 课程目标 课程结束后,您应能胜任以下工作:  配置和管理大型成熟企业的 ESXi 网络和存储系统。  管理 vSphere 环境变更。  优化所有 vSphere 组件的性能。  排除操作故障并找出造成这些故障的根本原因。  使用 VMware vSphere® ESXi™ Shell 和 VMware vSphere® Management 中约有三分之一的课程 内容将在本课程中重复出现。“VMware vSphere: Fast Track [V5]” 中的可扩展性主题也将在本课程中重复出现。 VMware vSphere:优化和扩展 VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001;
    0 码力 | 2 页 | 341.36 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06深度学习-优化算法

    1 2023年04月 深度学习-优化算法 黄海广 副教授 2 01 小批量梯度下降 本章目录 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 3 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 1.小批量梯度下降 4 小批量梯度下降 小批量梯度下降(Mini-Batch ?(?) ?? (?) (同步更新?? ,(j=0,1,...,n )) 5 小批量梯度下降 6 01 小批量梯度下降 02 优化算法 03 超参数调整和BatchNorm 04 Softmax 2.优化算法 7 伦敦温度的例子 days temperature ?1 = 40°F ?2 = 49°F ?3 = 45°F ... ?180 = ?2,再说一次,平 方是针对整个符号的操作。 接着RMSprop会这样更新参数值,?: = ? − ? ?? ???,?: = ? − ? ?? ???, 12 ADAM Adam优化算法基本上就是将Momentum和RMSprop结合在一起 最后更新权重,所以?更新后是?: = ? − ???? corrected ??? corrected+? (如果你只是用 Momentum,使用
    0 码力 | 31 页 | 2.03 MB | 1 年前
    3
  • ppt文档 KubeCon2020/大型Kubernetes集群的资源编排优化

    0 码力 | 27 页 | 3.91 MB | 1 年前
    3
  • pdf文档 优化小实例

    2D函数优化实例 主讲人:龙良曲 Himmelblau function Minima Plot Gradient Descent 下一课时 MNIST反向传播 Thank You.
    0 码力 | 7 页 | 542.69 KB | 1 年前
    3
  • ppt文档 绕过conntrack,使用eBPF增强 IPVS优化K8s网络性能

    0 码力 | 24 页 | 1.90 MB | 1 年前
    3
  • pdf文档 房源质量打分中深度学习应用及算法优化-周玉驰

    2019 KE.COM ALL COPYRIGHTS RESERVED 1 周玉驰 贝壳找房 - 数据智能中心 - 策略算法部 AI选房中深度学习的实践及优化 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 2 2019 KE.COM ALL COPYRIGHTS RESERVED 3 RESERVED 14 模型演变历程 2019 KE.COM ALL COPYRIGHTS RESERVED 15 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 v1.0 初版模型系统 2019 KE.COM ALL COPYRIGHTS RESERVED 16 v1.0 - 初版模型系统概览 • 房源特征  可以盘点所有房源质量 2019 KE.COM ALL COPYRIGHTS RESERVED 20 模型演变历程 v1.0 初版模型系统 v2.0 深度学习模型 v2.0+ 效果持续优化 XGBoost DNN+RNN 特征建设 2019 KE.COM ALL COPYRIGHTS RESERVED 21 RNN RNN LSTM 2019 KE.COM ALL COPYRIGHTS
    0 码力 | 48 页 | 3.75 MB | 1 年前
    3
  • pdf文档 运维上海2017-Kubernetes 在大规模场景下的service性能优化实战 - 杜军

    0 码力 | 38 页 | 3.39 MB | 1 年前
    3
  • pdf文档 腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明

    TKE使用eBPF优化 k8s service Jianmingfan 腾讯云 目录 01 Service的现状及问题 优化的方法 02 和业界方法的比较 性能测试 03 04 解决的BUG 未来的工作 05 06 01 Service的现状及问题 什么是k8s Service • 应用通过固定的VIP访问一组pod,应用对Pod ip变化 无感知 • 本质是一个负载均衡器 经历了二十多年的运行,比较稳定成熟 • 支持多种调度算法 优势 IPVS mode 不足之处 • 没有绕过conntrack,由此带来了性能开销 • 在k8s的实际使用中还有一些Bug 02 优化的方法 指导思路 • 用尽量少的cpu指令处理每一个报文 • 不能独占cpu • 兼顾产品的稳定性,功能足够丰富 弯路 • 为什么DPDK不行? • 独占cpu,不适合分布式的lb map • 由于eBPF中没有timer机制 IPVS 如何做SNAT? 优化方法评价 • 优势 • 大大缩短了数据通路,完全绕过了conntrack/iptables • 不足 • 对内核模块做了一定的修改,部署更困难 03 和业界方法比较 V.S. 纯粹的eBPF service 和其他的优化方法对比 V.S. Taobao IPVS SNAT patch • 复用了IPVS
    0 码力 | 27 页 | 1.19 MB | 9 月前
    3
  • pdf文档 动手学深度学习 v2.0

    2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.7 训练 . . . . 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.7 训练 . . . 3.7.2 重新审视Softmax的实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.7.3 优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.7.4 训练
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 3.11 扩展和性能指南

    . . . . . . . . 目 目录 录 第 第 1 章 章 概述 概述 第 第 2 章 章 推荐的安装 推荐的安装实 实践 践 2.1. 预安装依赖项 2.2. ANSIBLE 安装优化 2.3. 网络注意事项 第 第 3 章 章 推荐的主机 推荐的主机实 实践 践 3.1. OPENSHIFT CONTAINER PLATFORM MASTER 主机的推荐做法 3.2. OPENSHIFT 使用 TUNED 配置集扩展主机 第 第 4 章 章 优 优化 化计 计算 算资 资源 源 4.1. 过量使用 4.2. 镜像注意事项 4.2.1. 使用预部署的镜像提高效率 4.2.2. 预拉取镜像 4.3. 使用 RHEL 工具容器镜像进行调试 4.4. 使用基于 ANSIBLE 的健康检查进行调试 第 第 5 章 章 优 优化持久性存 化持久性存储 储 5.1. 概述 5.2. 常规存储指南 Overlay2 图形驱动程序 第 第 6 章 章 优 优化 化临时 临时存 存储 储 6.1. 概述 6.2. 常规存储指南 第 第 7 章 章 网 网络优 络优化 化 7.1. 优化网络性能 7.1.1. 为您的网络优化 MTU 7.2. 配置网络子网 7.3. 优化 IPSEC 第 第 8 章 章 路由 路由优 优化 化 8.1. 扩展 OPENSHIFT CONTAINER
    0 码力 | 58 页 | 732.06 KB | 1 年前
    3
共 208 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 21
前往
页
相关搜索词
VMwarevSphere优化扩展机器学习课程温州大学06深度算法KubeCon2020大型Kubernetes集群资源编排PyTorch入门实战22实例绕过conntrack使用eBPF增强IPVSK8s网络性能房源质量打分应用周玉驰运维上海2017大规规模大规模场景service杜军腾讯高性高性能技术揭秘建明范建明动手v2OpenShiftContainerPlatform3.11指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩